

A Method to Generate Formulae
for Temporal Logic Satisfiability Checkers

Toshifusa Sekizawa1,2, Toshinori Takai1,

Yoshinori Tanabe1,3, and Koichi Takahashi1

1 National Institute of

Advanced Industrial Science and Technology (AIST),
Research Center for Verification and Semantics (CVS).

2 Graduate School of Information Science and Technology,
Osaka University.

3 Graduate School of Information Science and Technology,
The University of Tokyo.

A Method to Generate Formulae

for Temporal Logic Satisfiability Checkers

Toshifusa Sekizawa 1,2, Toshinori Takai 1,
Yoshinori Tanabe 1,3, and Koichi Takahashi 1

1 National Institute of Advanced Industrial Science and Technology (AIST),

Research Center for Verification and Semantics (CVS)
2 Graduate School of Information Science and Technology, Osaka University

3 Graduate School of Information Science and Technology, The University of Tokyo

Abstract

In order to evaluate performances of temporal logic satisfiability check-
ers, benchmark with test formulae is required as well as analyzing com-
plexity of algorithms. However, there seems no clear criteria of the for-
mulae for benchmark. Thus, to evaluate performances of satisfiability
checkers for some new logics, we have to prepare test formulae of the log-
ics. In this paper, we propose a systematic method to generate formulae
of two-way CTL, which aim to be benchmark formulae of satisfiability
checkers. We also discuss the criteria of test formulae. Finally, we list
formulae which are obtained by our method and mention the results of
experiments with our two-way CTL satisfiability checker.

1 Introduction

Automatic verification methods are required in the field of system verification.
Specifications of reactive systems such as embedded systems can be regarded as
temporal behaviours of transition systems which are the models of the reactive
systems. Temporal logics are used to describe such behaviours. Model checking,
a major automatic verification technique of reactive systems, is a technique to
decide effectively whether a given finite model satisfies a given temporal formula
or not. In general, it is difficult to verify practical systems using straightforward
model checking technique, because of the state explosion problem. For such com-
plicated systems, one solution is abstraction, which reduces the size of models.
The authors proposed an abstraction method using a temporal logic [10]. In
the proposed abstraction method, not only model checking is required, but also
satisfiability checking of temporal logics is heavily used. Furthermore, there are
many other applications of satisfiability checking of temporal logics, for example
synchronizing concurrent programs [5, 9], analysis of cellular automata [6], XML
data transformation [14], etc. To implement such applications, fast satisfiability
checking algorithms [12, 13, 14] are developed .

For evaluating implementations of satisfiability checking algorithms, two
conventional methods have mainly used: (a) analyzing computational complex-

1

ity, and (b) measuring running time for some formulae. In the case (a), it is
sometimes difficult to obtain accurate complexities. Even if complexities are ob-
tained, it is often not enough to compare algorithms in general. In the case (b),
since criteria of selected formulae are rarely shown, evaluation is also difficult.
Benchmarks using random generated formulae are not suitable for evaluation.
Many researches have proposed benchmark methods for propositional logic sat-
isfiability checkers, but there are a few benchmarks for temporal logics.

Balsiger et al. proposed a benchmark method for theorem provers of propo-
sitional modal logics [1] which uses patterns. A pattern is a formula with natural
number parameters, which can generate an arbitrary long formula. For eval-
uation experiments, they used formulae generated from the patterns. In their
method, by analyzing characteristics of patterns in advance, we can clarify char-
acteristics of theorem provers. For example, a number of atomic propositions,
depth of nested modal operators are characteristics of patterns. Balsiger et al.
listed some patterns in the paper [1], but they did not describe how to give such
patterns. Therefore, for other logical systems, it is not clear how to generate
formulae to evaluate satisfiability checkers. In this paper, we propose system-
atic methods to give patterns which can be used for satisfiability checkers and
theorem provers.

We first discuss conditions required for a set of temporal logic formulae. Bal-
siger et al. described conditions which should be satisfied by evaluation methods
for theorem provers. Then, as a solution, they proposed formulae with natural
number parameters [1]. We next consider desirable properties of such formu-
lae with natural number parameters. After that, we propose some systematic
methods to generate formulae of two-way CTL. Two-way CTL is used in the
abstraction method of graph rewriting systems [10, 11], proposed by the authors.

When we try to deal with timed or spatial properties in modal logics, some-
times we need backward modalities. Two-way CTL is an extension of one-way
CTL, i.e., backward modalities are allowed. Properties with respect to backward
transitions can be described easily in two-way CTL. Complexities of satisfiabil-
ity checking of two-way CTL and one-way CTL are both EXPTIME. On the
other hand, two-way CTL does not have the finite model property in contrast
to one-way CTL.

The outline of this paper is as follows. First, we show a theorem that provides
the basis for our formulae generations, and then, we propose methods to generate
formulae based on the theorem. Since the proposed methods need simple valid
formulae as seeds, we next show how to obtain such formulae. Lastly, we list
a set of formulae generated by our method and show some experiment results
using satisfiability checker [12] developed by the authors.

2 Backgrounds

Balsiger et al. proposed seven postulates [1] for benchmark tests for theorem
provers as cited in Figure 1 that benchmark formulae should concern. They
proposed patterns of formulae with a natural number parameter as a solution
to satisfy these postulates. In their methods, they prepared arbitrarily long
formulae which were generated by applying rules to simple formulae. In this
paper, we call such a generated formula a natural number parameterized for-
mula or a parameterized formula. Evaluation of theorem provers consists of two

2

1. Provable as well as unprovable formulas.

2. Formulas of various structures.

3. Some of the benchmark formulas are hard enough for forth-coming provers.

4. For each formula the result is already known today.

5. Simple ’tricks’ do not help to solve the problems.

6. Applying the benchmark test to a prover takes not too much time.

7. The results can be summarized.

Figure 1: Postulates concerning benchmark tests for automated theorem
provers. (cited from [1])

phases, (1) to prepare some parameterized formulae, and (2) to measure the
maximum value of the parameters such that formula corresponds to the value
can be judged within a fixed time, for example 100 seconds. The correspondence
between parameterized formulae and the postulates in Figure 1 is as follows:

1. Prepare both valid and non-valid parameterized formulae.

2. Prepare parameterized formulae which contain various characteristics.

3. Arbitrarily long formulae can be obtained by increasing a natural number
parameter.

4. Prepare parameterized formulae which preserve validity as well as invalid-
ity.

5. Parameterized formulae are chosen so that simple tricks do not help to
solve, although the effect is unclear.

6. Measurement completes in a fixed time since the criterion of measurement
is the value of parameter.

7. The results can be summarized with a table of natural number parameters.

These postulates were proposed for theorem provers. They are also applicable to
satisfiability checkers by replacing ’provable’ with ’unsatisfiable’, and ’unprov-
able’ with ’satisfiable’ because the negation of a provable formula is unsatisfiable,
and the negation of an unprovable formula is satisfiable.

In order to evaluate theorem provers, Balsiger et al. prepared a set of parame-
terized formulae which contains enough variety in consideration of combinations
of the following viewpoints: (1) the number of different atomic propositions in a
formula: some increase the number according to the parameter, and some does
not, and (2) the depth of nested temporal operators: some increase the number
according to the parameter, and some does not. But they did not mention the
length of formulae against the parameter except the length can be arbitrarily
long. Since the lower limit of the complexity of satisfiability checking of two-way
CTL formulae is EXPTIME [4], it is expected that the checking time increases ex-
ponentially even if the length of formula increasing linearly with the parameter.

3

From that point of view, parameterized formulae in which the length increases
linearly would be appropriate for evaluating satisfiability checkers. On the other
hand, we also need formulae in which the length increases exponentially to sat-
isfy the postulate 3 in Figure 1. Therefore, we propose a new characteristic of
formulae: (3) the length of formula increases linearly as well as exponentially. In
addition to the characteristics (1) and (3), we propose a set of formulae satisfy
the following (2’), (4) and (5). (2’) the depth of nested temporal operators is
constant and increasing, (4) the number of modalities is constant and increasing
(5) the number of occurrences of backward modalities is zero and non-zero.

3 Preliminaries

3.1 Syntax of two-way CTL

Let AP be a set of atomic propositions, and Mod be a set of modalities. For each
modality a ∈ Mod, we assume that there exists a modality a ∈ Mod such that
a = a. The syntax of two-way CTL is defined as:

φ ::=p |¬φ |φ ∨ φ |EAXφ |EA[φ U φ] |EA[φ R φ]

where p is an atomic proposition, and A is a finite nonempty set of modalities.
Intuitively, each modality corresponds to a transition labels in transition sys-
tems. In the following, we only deal with two-way CTL formulae. For formulae
φ, ψ1, . . . , ψn and atomic propositions p1, . . . , pn, we write φ[ψ1/p1, . . . , ψn/pn]
for the formula φ in which p1, . . . , pn are replaced by ψ1, . . . , ψn, respectively.
We write φ[ψ1/p1, . . . , ψn/pn]2 for the formula obtained by the same replace-
ment to φ[ψ1/p1, . . . , ψn/pn]. For the formula obtained by the replacements m
times, we write φ[ψ1/p1, . . . , ψn/pn]m .

3.2 Semantics of two-way CTL

A tuple M = (M, {Ra | a ∈ Mod}, λ) is a Kripke structure if M satisfies 1)
Ra ⊆ M × M，2) Ra = {(s, t) | (t, s) ∈ Ra}，and 3) λ : AP → 2M．We call
an element of M a state, and λ a labelling function. For labelling function
λ : AP → 2M , atomic proposition x ∈ AP , and X ⊆ M , we write λ{x 7→ X} for
the labelling function λ in which the value of x is changed to X. For a Kripke
structure M = (M,R, λ), we write M{x 7→ X} for (M,R, λ{x 7→ X}). In this
paper, we do not require a Kripke structure to be total. For set of modalities
A ⊆ Mod , an A-path σ satisfies the following conditions (1), (2), and (3). (1)
σ is a finite or infinite sequence of M . The length of σ is denoted len(σ), and
the i-th element (i ≥ 0) of σ is denoted σi. When the length of σ is infinite, we
regard i < len(σ) holds for any natural number i. (2) For any natural number
i such that i + 1 < len(σ), there exist a ∈ A and (σi, σi+1) ∈ Ra holds. (3) If σ
is finite, there is no pair (s, a) ∈ M × A such that (σlen(σ)−1, s) ∈ Ra.

For a Kripke structure M = (M, {Ra | a ∈ Mod}, λ), a state s ∈ M , and a
formula φ, we define M, s |= φ inductively as follows:

• If φ is of the form p ∈ AP and s ∈ λ(p), then M, s |= p．

• If φ is of the form ¬φ′ and M, s ̸|= φ′, then M, s |= ¬φ′.

4

• If φ is of the form φ1∨φ2, M, s |= φ1 or M, s |= φ2, then M, s |= φ1∨φ2．

• When φ is of the form EAXφ′, and if there exist s′ ∈ M and a ∈ A, such
that (s, s′) ∈ Ra and M, s′ |= φ′, then M, s |= EAXφ′．

• When φ is of the form EA[φ1 U φ2], if there exist A-path σ and an integer
i such that σ0 = s and i < len(σ) and they satisfy both conditions (1) and
(2) below, then M, s |= EA[φ1 U φ2]．(1) σi |= φ2 and (2) for any integer
j, 0 ≤ j < i implies σj |= φ1 hold.

• When φ is of the form EA[φ1 R φ2], if there exist an A-path σ such that
σ0 = s and they satisfy at least one of conditions (1) and (2) below, then
M, s |= EA[φ1 R φ2]. (1) For all integers i < len(σ), σi |= φ2 or (2) there
exists an integer i < len(σ), σi |= φ1 holds and for all integers j ≤ i,
σj |= φ2 hold.

In the following, we use symbols ∧,→,↔,⊤ and ⊥ with their usual meanings.
Additionally, we use the following abbreviations:

• AAXφ
def= ¬EAX¬φ

• AA[φ1 U φ2]
def= ¬EA[¬φ1 R ¬φ2]

• AA[φ1 R φ2]
def= ¬EA[¬φ1 U ¬φ2]

• AAGφ
def= AA[⊥ R φ]

• AAFφ
def= AA[⊤ U φ]

• EAGφ
def= EA[⊥ R φ]

• EAFφ
def= EA[⊤ U φ]

We assume that Mod includes a modality a. We omit the suffix {a} in formulae,
for example we write AXφ for A{a}Xφ. For an integer n ≥ 0, we write EXnφ for the

formula that φ is preceded by n EXs, i.e., EX0φ
def= φ and EXn+1φ

def= EX(EXnφ).
A formula φ is valid if M, s |= φ holds for an arbitrary Kripke structure

M and for an arbitrary state s of M. A formula φ is satisfiable if there exist
a Kripke structure M and a state s such that M, s |= φ holds. Note that the
negation of an unsatisfiable formula is valid, and the negation of an non-valid
formula is satisfiable. We write [[φ]]M for the set of states in Kripke structure M
satisfying formula φ, i.e., [[φ]]M = {s ∈ M | M, s |= φ} where M = (M,R, λ).

4 Automatic formulae generation methods

In this section, we give construction methods which generate formulae with a
natural number parameter, i.e., parameterized formulae. The outline of the
method is (1) to give a seed formula χ(0), and then (2) to give a construc-
tion method of formulae χ(n) for arbitrary positive integer parameter n from
χ(n − 1). We call the procedure (2) a complication. We say a complication
preserves validity χ(n) is valid for any n, provided that χ(0) is valid. We say a

5

complication preserves satisfiability χ(n) is satisfiable for any n, provided that
χ(0) is satisfiable. Both satisfiable and unsatisfiable formulae are required to
evaluate satisfiability checkers. In the following, we only discuss complications
preserving validity, because we can obtain unsatisfiable formulae by negating
valid formulae.

4.1 Complication preserving validity to generate formulae

A simple method to obtain valid parameterized formulae is to use a substitution
which replaces atomic propositions in a valid formula with complicated formulae.
That is, let α0 and φ be formulae and x be an atomic proposition appearing in
α0 and φ, then, we can obtain parameterized formula χ0 as:

χ0(n) = α0[φ/x]n

if α0 is valid.
In this complication, if a satisfiability checker detects the base valid formula

α0, then any complicated formulae above can be checked in constant time. This
is an example that a ’simple trick’ can be used efficiently for solving param-
eterized formulae. This means that such complication is not appropriate for
evaluation of satisfiability checkers. In this paper, we give ’non-trivial’ com-
plication methods. First, we show a theorem which will be the basis of our
complications preserving validity.

Here are some preliminaries. We say a formula is in positive form if it
contains no occurrence of the negation operator ¬ except immediately before
atomic propositions. Every formula can be transformed to a formula in positive
form. An atomic proposition x occurs positively in formula φ if the negation
operator precedes no occurrences of x in φ. Let φ be a formula, x be an atomic
proposition, M = (M,R, λ) be a Kripke structure, and X,X ′ ⊆ M be sets of
states. If x occurs positively in φ and X ⊆ X ′, then we have the following
relation:

[[φ]]M{x 7→X} ⊆ [[φ]]M{x 7→X′} (1)

The relation (1) can be proved by an induction on construction of φ.
The following theorem gives the basis for our complications. Some corollaries

are derived from the theorem. Our complications are generated based on these
corollaries.

Theorem 1. Let x be an atomic proposition, α1, β1 be formulae in positive
form in which x occurs positively, and α0, β0 be formulae. If the two formulae
α1 → β1 and α0 → β0 are valid, then so is formula α1[α0/x] → β1[β0/x].

Proof Let M be an arbitrary Kripke structure. It is sufficient to show that
[[α1[α0/x]]]M ⊆ [[β1[β0/x]]]M holds. The theorem can be shown as follows:

[[α1[α0/x]]]M = [[α1]]M{x 7→X1} (2)
⊆ [[β1]]M{x7→X1} (3)
⊆ [[β1]]M{x7→X2} (4)
= [[β1[β0/x]]]M

where X1 = [[α0]]M and X2 = [[β0]]M, (3) is proved by the fact formula α1 → β1

is valid and (1), (4) is proved because α0 → β0 is valid.

6

Note that the assignment used in Theorem 1 is not simple like χ0. We have
following corollaries by repeatedly applying Theorem 1.

Corollary 1. Let x be an atomic proposition, αi, βi (1 ≤ i ≤ n) be formulae in
positive form in which x occurs positively, and α0, β0 be formulae. If αi → βi

(1 ≤ i ≤ n) and α0 → β0 are valid, then so are φi → ψi (1 ≤ i ≤ n), where
φ0 = α0, ψ0 = β0，φi = αi[φi−1/x], and ψi = βi[ψi−1/x] (1 ≤ i ≤ n).

Corollary 2. Let xi (1 ≤ i ≤ m) be atomic propositions, α, β be formulae in
positive form in which x1, . . . , xm occur positively, and αi, βi (0 ≤ i ≤ m)
be formulae. If α → β and αi → βi (0 ≤ i ≤ m) are valid, then so is
α[α1/x1, . . . , αm/xm] → β[β1/x1, . . . , βm/xm].

These theorem and corollaries can be applied to any logical systems of which
models are Kripke structures, e.g., CTL, LTL, and CTL∗. Therefore, our for-
mula generation methods based on them mentioned below can be applied to
other logical systems.

We show how to construct parameterized formulae based on the corollaries.
To apply the corollaries, we need a number of formulae of the form α → β. We
show some simple ways to give such formulae. To obtain parameterized formu-
lae, we need seeds of the form α0 → β0, which we will discuss in Section 4.2.

Example 1. First we consider the case in which for any i, j (1 ≤ i, j ≤ n),
αi = αj and βi = βj in Corollary 1. For example, let αi = α, and βi = β
(1 ≤ i ≤ n) where α = EXx, and β = EXx. By applying Corollary 1 to a valid
formula EXx → EXx, we obtain the following parameterized formula χ1:

χ1(n) = EXnα0 → EXnβ0

This parameterized formula corresponds to the inference rule in a deduction
system for CTL [4]:

γ → δ

EXγ → EXδ

A satisfiability checker which knows the deduction rule can easily solve formulae
generated by χ1. We therefore consider a derived parameterized formula as
follows:

χ2(n) =
∨

1≤i≤n

(
EXi(α0) → EXn(β0)

)
This complication corresponds to the complication k d4 p introduced in [1]. In
our methods, any valid formula of the form α → β can be used to construct
parameterized formulae. For example, αi = αa, βi = βa (i: even), αi = αb, βi =
βb (i: odd), αa = x∧EaXx，βa = EaXEaX(x)，αb = x∧EbXx，and βb = EbXEbX(x).
Note that both formulae x ∧ EaXx → EaXEaX(x) and x ∧ EbXx → EbXEbX(x) are
valid. Consequently, the obtained parameterized formula can be written as
follows:

χ3(n) =
∨

1≤i≤n

(φi → ψn) ,

where φ0 = α0，ψ0 = β0，φi = φi−1 ∧ EaXφi−1 (i is odd)，φi = φi−1 ∧ EbXφi−1

(i is even)，ψi = EaXEaX(ψi−1) (i is odd)，ψi = EbXEbX(ψi−1) (i is even), and
α0 and β0 are any formula such that α0 → β0 is valid.

7

Example 2. Next, we consider a complication obtained by applying Corollary 1
to formulae αi and βi (1 ≤ i ≤ n) where all αis are identical except atomic
propositions and so are βis. For example, let αi = E[x U qi], and βi = E[x U qi]
(1 ≤ i ≤ n), where qi is an atomic proposition and αi → βi (1 ≤ i ≤ n) is valid.
Then we obtain a parameterized formula χ4 by applying Corollary 1:

χ4(n) = φn → ψn

In the formula above, φ0 = α0，ψ0 = β0, φn = E[φn−1 U qn]，and ψn =
E[ψn−1 U qn]. The number of atomic propositions in parameterized formula χ4

increases according to the parameter n. While it is constant in the parameterized
formula in Example 1. For evaluating satisfiability checkers, it is preferable to
prepare both of these two types of parameterized formulae. As we will describe
in Section 4.2, formula A[c0 U p0] ∧ AG(p0 → AG(¬c0 ∧ x)) → AFAG(¬c0 ∧ x) is
valid. If we use this formula as αi → βi, we obtain a parameterized formula
χ5: χ5(n) = φn → ψn, where φn = A[cn U pn] ∧ AG(pn → AG(¬cn ∧ x)), and
ψn = AFAG(¬cn ∧ x).

Example 3. We give a parameterized formula in which the depth of temporal
operators is constant. We use formulae x∧A[pi U q] and x∧(q∨(pi∧AXA[pi U q]))
(1 ≤ i ≤ n) for αi and βi respectively in Corollary 1. Note that A[p U q] →
q ∨ (p ∧ AXA[p U q]) is valid. Then we obtain a parameterized formula:

χ6(n)=
∧

1≤i≤n

A[pi U q]→
∧

1≤i≤n

(q ∨ (pi ∧ AXA[pi U q]))

Example 4. We consider a complication which replaces formulae αi, and βi

(1 ≤ i ≤ n) in Corollary 1 with the same formulae except modalities. For
example, let αi = Aai,ai+1Gx, and βi = AaiGx (1 ≤ i ≤ n). Since αi → βi is valid,
we can obtain a parameterized formula by the same way as in Example 2. Then
we have a parameterized formula χ7: χ7(n) = φn → ψn, where φi = Aai,ai+1Gx,
and ψi = Aai

Gx (0 ≤ i ≤ n). In this parameterized formula, the number of
modalities increases as well according to the parameter.

Example 5. We show a complication derived from Corollary 2 in which for-
mulae αi and βi are replaced with the same formulae. For example, we take
φn and ψn introduced in Example 2 for α and β respectively. Let αi = α′,
and βi = β′ (1 ≤ i ≤ n)，where α′ = x ∧ EaX⊤, and β′ = EaXEaXx. Since
formula x ∧ EaX⊤ → EaXEaXx is valid, we can apply Corollary 2, and obtain a
parameterized formula χ8:

χ8(n) = φ′
n → ψ′

n

where φ′
0 = α0，ψ′

0 = β0，φ′
n = E[φ′

n−1 U (p∧EaX⊤)], and ψ′
n = E[ψ′

n−1 U EaXEaXp].

Now, we have some complications preserving validity which generate valid
formulae from seeds. In the next subsection, we describe several ways to obtain
appropriate seeds.

8

4.2 Methods to obtain simple valid formulae

In Example 1, we use formula EXx → EXx. As mentioned in the example, such a
trivial formula can be used for constructing parameterized formulae. In general,
a valid formula of the form α → β, where α and β are different from each other,
would produce better results to evaluate satisfiability checkers. In the rest of
this subsection, we show some easy ways to obtain simple valid formulae.

Trivial Theorems Some CTL theorems are described in standard textbooks
on system verification using temporal logics [2, 7]. For example, E[φ U ψ] ↔
ψ∨(φ∧EXE[φ U ψ]), A[p U q] ↔ ¬E[¬q U (¬p∨¬q)∧¬EG(¬q)], etc. Axioms
of a formal system for CTL are also useful references [4, 8]. For example,
EX(φ ∨ ψ) ↔ EXφ ∨ EXψ, AXφ ∧ AXψ → AX(φ ∧ ψ), etc. In the case of two-
way CTL, we can easily see that Aa,bGx → AaGx，x ∧ EaX⊤ → EaXEaXx
are valid.

Combination of Patterns Dwyer et al. analyzed frequently observed proper-
ties for system verification and gave their patterns [3]. They call the pat-
terns specification patterns and express them in temporal logics. For exam-
ple, a property “an event S does not occur before an event P occurs” can
be expressed by specification patterns. The corresponding CTL formula is
A[¬S U (P ∨AG¬P)]. We can use specification patterns to construct simple
valid formulae. We name the formula A[¬S U (P ∨ AG¬P)] absence(P, S).
Then we have a non-trivial valid formula AFP ∧ AG¬S → absence(P, S).
It is valid since if P occurs eventually and S never occurs, then S cannot
occur before P .

Another way is to consider models which satisfy some formulae. For ex-
ample, we consider a property “event c1 will eventually occurs at some
states, and from these states, event c1 permanently holds and event c0

never holds”. This property can be expressed as AFAG(¬c0 ∧ c1) in CTL.
On the other hand, the models satisfying A[c0 U p0]∧AG(p0 → AG(¬c0∧c1))
also satisfy the property above. That is, c0 holds until certain state where
p0 holds, but c0 does not hold and c1 holds permanently from the state.
From the discussion above, we have a valid formula A[c0 U p0] ∧ AG(p0 →
AG(¬c0 ∧ c1)) → AFAG(¬c0 ∧ c1).

4.3 Satisfiable parameterized formula

In order to generate satisfiable formulae, we consider a property P (n) on a
Kripke structure where n is a natural number parameter. A statement “within
n steps, there is a state where an atomic proposition p holds ” is an example
of a property P (n). We adopt such P (n) that the size of Kripke structures
which satisfies P (n) increases according to parameter n. Parameterized formu-
lae can be obtained by expressing such properties in two-way CTL. The example
mentioned above can be expressed as χ9(n) = EXn(p). We show some examples.

Example 6. We show some variations of χ9. Let χ10(n) =
∧

0≤i≤n EX
i(α0)

where α0 is an arbitrary formula which does not contain reverse modalities.
Another variation is: χ11(n) =

∧
1≤i≤n

(
EXi−1(¬α0) ∧ EXi(α0)

)
. But in this

case, we have to choose an appropriate formula α0.

9

Example 7. Two-way CTL does not have the finite model property. For exam-
ple, if a Kripke structure satisfies the formula z∧AaXAaG(¬z)∧(AaG(EaXp ∧ AaFz)),
then the set of its states is infinite. We can prove it as follows. We assume that
the formula holds on a state s in a finite Kripke structure. Then there exists
an infinite A-path σ starting with s, because s |= AaGEaXp. Since the state
space is finite, there exist i and j with σi = σj (i < j). For the loop from σi

to σj through backward modality a, we have σi |= EaG¬z, which contradicts
s |= AaG(EaXp ∧ AaFz). Based on the formula, we can devise parameterized
formulae. For example, a number line, which continues in the right and left
infinitely, can be expressed as follows:

χ12(0) = z0 ∧ Aa0XAa0G(¬z0) ∧ Aa0XAa0G(¬z0) ∧
Aa0G(Ea0Xp0 ∧ Aa0Fz0) ∧
Aa0G(Ea0Xn0 ∧ Aa0Fz0)

This formula can be parameterized as χ12(n) = αn ∧ χ12(n − 1) ∧ βn[χ12(n −
1)/x] ∧ γn[χ12(n − 1)/x] for n ≥ 1 where

αi = zi ∧ AaiXAaiG(¬zj) ∧ AaiXAaiG(¬zj),
βi = EaiX(pi) ∧ AaiG(EaiX(pi) ∧ AaiF(zi) ∧ x), and
γi = EaiX(pi) ∧ AaiG(EaiX(pi) ∧ AaiF(zi) ∧ x).

The length of the parameterized formulae increases exponentially.

Example 8. We consider a complication in which the number of modalities
increases. Formula χ13(0) = Aa1G(¬α0)∧Aa2G(¬α0)∧Ea1,a2F(α0) expresses that
α0 is not reachable through the modality a1 only or a2 only, but it is reachable
if both modalities a1 and a2 are allowed. A parameterized formula is given as
follows:

χ13(n) = Aa1,...,an−1G(¬α0) ∧
Aa1,...,an−2,anG(¬α0) ∧ · · · ∧
Aa2,...,anG(¬α0) ∧ Ea1,...,anF(α0)

This complication is rather simple, but it can be combined with other complica-
tions in order to obtain parameterized formulae with increasing modalities.

Example 9. We consider a complication in which the depth of nested temporal
operators is constant. Let:

χ14(0) = AaFα0 ∧ AaFα1 ∧ ¬α0 ∧ ¬α1 ∧
AaG(α0 → ¬(α1 ∨ EaXα1 ∨ EaXα1)) ∧
AaG(α1 → ¬(α0 ∨ EaXα0 ∨ EaXα0))

then it is generalized into a parameterized formula: χ14(n) =
∧

1≤i≤n(AaFαi ∧
¬αi) ∧

∧
0≤i≤n AaG(αi → ¬(γn,i ∨ δn,i,a ∨ δn,i,a)) where γi,j = α0 ∨ · · ·αj−1 ∨

αj+1 · · · ∨ αi and δi,j,m = EmXα0 ∨ · · · ∨ EmXαj−1 ∨ EmXαj+1 ∨ · · · ∨ EmXαi.

In practice, system specifications for model checking rarely contain such
complicated formulae with deeply nested temporal operators such as χ2(n) or
χ10(n). However, the abstraction method for pointer manipulation systems
proposed by the authors [10], needs to judge the satisfiability of such complicated
formulae.

10

Table 1: Characteristics of parameterized formulae in Figure 2

name sat AP depth Mod inverse length
test1 n c c c n linear
test2 n i c c n linear
test3 n i c c n linear
test4 n c i c n linear
test5 n c c i n linear
test6 n i c i n linear
test7 n i i c n linear
test8 n c i i n linear
test9 n c i i n quadratic
test10 n i i i n linear
test11 n c c c y linear
test12 n i c c y linear
test13 n c i c y exp
test14 n c i c y quadratic
test15 n c c i y linear
test16 n i c i y linear
test17 n i i c y linear
test18 n c i i y linear
test19 n i i i y linear
test20 y c i c n quadratic
test21 y i i i y exp
test22 y c c i n linear
test23 y i c c y linear
test24 y c i i n quadratic

5 Experiments

In Figure 2, we show a set of parameterized formulae generated systematically
by our proposed methods in Section 4. The parameterized formulae from χ1 to
χ14 are given in the previous section. For example, χ1 in test4 is introduced
in Example 1, and test4(0) is ¬(p ∧ q → p). The parameterized formulae from
test1 to test19 are unsatisfiable, i.e. all generated formulae are obtained by
negating valid formulae. The parameterized formula test3 is introduced in
Example 3. The parameterized formulae test6 and test16 are derived from
test3. Parameterized formulae from test20 to test24 are satisfiable. The
parameterized formula test24 is a combination of χ11 and χ13, that is, it is χ13

with α0 = χ11. Table 1 shows characteristics of these parameterized formulae,
where sat is satisfiability, ’y’ means satisfiable and ’n’ means unsatisfiable, AP
is the number of atomic propositions, ’i’ means the number increases according
to the parameter and ’c’ means constant, depth is the depth of nested tempo-
ral operators, ’i’ means the depth increases and ’c’ means constant, Mod is the
number of modality types, ’i’ means the number increases and ’c’ means con-
stant, and inverse is occurrence of backward modalities, ’y’ means backward
modalities occur and ’n’ means no occurrence. In Table 1, ’linear’ (’quadratic’,
and ’exp’) means the length of a formula increases linearly (quadratically, and

11

test1(n) = ¬
(∧

0≤i≤n(p) →
∧

0≤i≤n(p)
)

(n ≥ 0)
test2(0) = ¬(AFP ∧ AG(¬S) → absence(P, S))
test2(n) = ¬χ6(n),
test3(n) = ¬((EX(u ∨ v) ∧

∧
1≤i≤n A[pi U q]) → (EXu ∨ EXv ∧

∧
1≤i≤n(q ∨ AXA[pi U q])))

test4(n) = ¬χ1(n) (n ≥ 1), ¬(p ∧ q → p) (n = 0)
test5(0) = ¬((p ∧ Ea0Xp) → Ea0Xp) (n = 0)
test5(n) = ¬(φn → ψn) (n ≥ 1), φn = (p ∧ Ean

Xp) ∧ φn−1, ψn = Ean
Xp

test6(n) = ¬((Ea0X(u ∨ v) ∧
∧

1≤i≤n Aai [pi U q]) →
(Ea0Xu ∨ Ea0Xv ∧

∧
1≤i≤n(q ∨ AaiXAai [pi U q])))

test7(n) = ¬χ5(n)(n ≥ 0)
test8(n) = ¬χ7(n)(n ≥ 1), ¬(E[p U q] → EFq) (n = 0)
test9(0) = ¬(E[p U q] → EFq)
test9(n) = ¬(φn → ψn) (n ≥ 1), φi = EaiFφi−1, ψi = EaiFψi−1

test10(n) = ¬(φn → ψn) (n ≥ 0), φ0 = α0, ψ0 = β0,
φn = αn[φn−1/cn] (n ≥ 1), ψn≥1 = βn[ψn−1/cn] (n ≥ 1),
αn = Aan [cn U pn] ∧ AanG(pn → AanG(¬cn ∧ cn+1)) (n ≥ 0),
βn = AanFAanG(¬cn ∧ cn+1) (n ≥ 0)

test11(n) = ¬(
∧

0≤i≤n(p → EaXEaXp) →
(
∧

0≤i≤n(p → EaXEaXp)) (n ≥ 0)
test12(n) = ¬(

∨
0≤i≤n(p ∧ EaGqn) →∨

0≤i≤n(qn → EaFp)) (n ≥ 0)
test13(n) = ¬χ3(n) (n ≥ 1), ¬(Aa,bGp → AaGp) (n = 0)
test14(0) = ¬(AXp ∧ AXq → AX(p ∧ q))
test14(n) = ¬χ8(n) (n ≥ 1),
test15(n) = ¬(

∨
0≤i≤n(p ∧ EaiXEaiXp) →∨

0≤i≤n(q → EaiFp)) (n ≥ 0)
test16(n) = ¬((Ea0X(u ∨ v) ∧

∧
1≤i≤n(p ∧ EaiXp)) →

(Ea0Xu ∨ Ea0Xv ∧
∧

1≤i≤n Eai
XEai

Xp))
test17(n) = ¬(φn → ψn) (n ≥ 0), φ0 = α0, ψ0 = β0,

φn = φn−1[αn/cn] (n ≥ 1), ψn = ϕn−1[βn/cn] (n ≥ 1),
αn≥0 = Aa[cn U pn] ∧ AaG(pn → AaG(¬cn ∧ cn+1)) (n ≥ 0),
βn = AaG((¬cn ∧ cn+1) → EaFp0) (n ≥ 0)

test18(n) = ¬(φn → ψn) (n ≥ 0), φ0 = α0, ψ0 = β0,
φn = φn−1[αn/q] (n ≥ 1), ψn = ψn−1[βn/q] (n ≥ 1),
αn = p ∧ Ean [¬p U q] (n ≥ 0), βn = q → EanFp (n ≥ 0)

test19(n) = ¬(φn → ψn) (n ≥ 0), φ0 = α0, ψ0 = β0,
φn = φn−1[αn/qn−1] (n ≥ 1), ψn = ψn−1[βn/qn−1] (n ≥ 1),
αn = pn ∧ Ean [¬pn U qn] (n ≥ 0), βn = qn → EanFpn (n ≥ 0)

test20(n) = χ11(n) (n ≥ 1), p ∧ q (n = 0)
test21(n) = χ12(n) (n ≥ 0)
test22(0) = AaG(EaX(p ∧ q) ∧ EaX(¬q ∧ p)) ∧ AaF¬p
test22(n) = χ13(n) (n ≥ 1)
test23(n) = χ14(n) (n ≥ 0)
test24(n) = χ13(n)[χ11(n)/α0] (n ≥ 1), χ11(0) (n = 0)

Figure 2: A set of parameterized formulae generated by proposed methods

12

Table 2: Measurements results of the maximum parameter by a satisfiability
checker

test1 >20 test2 7 test3 11 test4 15
test5 >20 test6 7 test7 3 test8 15
test9 14 test10 3 test11 >20 test12 >20
test13 14 test14 >20 test15 >20 test16 13
test17 4 test18 >20 test19 >20
test20 >20 test21 3 test22 >20 test23 6
test24 5

Table 3: Environment.

OS Red Hat Enterprise Linux ES3
CPU Intel Xeon 3.0GHz

Memory 4GB
JVM Java2 1.5.0 03

exponentially respectively). Since unsatisfiable formulae are more difficult to
solve for satisfiability checkers in general, a fewer number of satisfiable formulae
are in the list. We mainly prepare formulae which length is linear. For unsat-
isfiable formulae, the table covers all combinations of the 4 characteristics, AP,
depth, Mod, and inverse.

We measured a satisfiability checker [12] which has been developed by the
authors using the set of formulae in Figure 2. The criterion for the measurement
is “the parameter value of the longest formula of which satisfiability is judged
within 100 seconds”. The measurement results are shown in Table 2, and the
environment is shown in Table 3. The criterion for measurement is adopted from
the paper [1] by Balsiger et al. Sometimes satisfiability checking times against
the length of formulae are plotted in a graph to show results, but drawing such
graphs is not suitable for comparing two or more results. Here, 100 seconds is
an acceptable time that one can wait and fixing measurement time corresponds
to the postulate (6) with respect to evaluation time described in Section 2.
Additionally, showing the results by parameter n corresponds to the postulate
(7) with respect to summarization.

6 Conclusion

In this paper, we proposed systematic methods to generate formulae for two-
way CTL satisfiability checkers. We adopted two-way CTL as an example of
temporal logics. Our methods are based on valid formulae of the form α → β
and can be applied to other logics which have Kripke structures as models.

For unsatisfiable formulae, we proposed an automatic method to obtain com-
plicated formulae, but for satisfiable formulae, we only showed some examples.
To check unsatisfiability is difficult in general, and thus unsatisfiable formulae
are important for evaluation in satisfiability checking. However, to find methods

13

to generate satisfiable formulae systematically is one of our future work.
We only showed methods to generate formulae. Our future work includes an

evaluation method of satisfiability checkers using sets of parameterized formulae
generated by our methods. We suppose that analyzing which characteristic is
important in Table 1 is also essential for evaluating satisfiability checkers.

Acknowledgements

This research was supported by Core Research for Evolutional Science and
Technology (CREST) Program “New High-Performance Information Process-
ing Technology Supporting Information-Oriented Society” of Japan Science and
Technology Agency (JST).

References

[1] P. Balsiger, A. Heuerding, and S. Schwendimann, “A benchmark method
for the propositional modal logics K,KT,S4,” J. of Automated Reasoning,
vol. 24, no. 3, pp. 297–317, 2000.

[2] E.M. Clarke, O. Grumberg, and D. Peled, Model Checking, Mit Press,
2000.

[3] M.B. Dwyer, G.S. Avrunin, and J.C. Corbett, “Patterns in property speci-
fications for finite-state verification,” Proc. of 21st International Conference
on Software Engineering, May, 1999.

[4] E.A. Emerson, “Temporal and modal logic,” in Handbook of Theoretical
Computer Science, vol. B, chap. 16, pp. 995–1072, Elsevier and MIT Press,
1990.

[5] E.A. Emerson, and E.M. Clarke, “Using branching-time temporal logic to
synthesize synchronization skeletons,” Science of Computer Programming,
vol. 2, no. 3, pp. 241–266, 1982.

[6] M. Hagiya, K. Takahashi, M. Yamamoto, and T. Sato, “Analysis of syn-
chronous and asynchronous cellular automata using abstraction by tempo-
ral logic,” Proc. of 7th International Symposium on Functional and Logic
Programming, LNCS, vol. 2998, pp. 7–21, 2004.

[7] M. Huth, and M. Ryan, Logic in Computer Science: modelling and reason-
ing about systems, Cambridge University Press, 2004.

[8] M. Lange, and C. Stirling, “Focus games for satisfiability and completeness
of temporal logic,” Proc. of 16th Annual IEEE Symposium on Logic in
Computer Science, pp. 357–365, 2001.

[9] Z. Manna, and P. Wolper, “Synthesis of communicating process from tem-
poral logic specifications,” ACM Transactions on Programming Languages
and Systems, vol. 6, no. 1, pp. 68–93, 1984.

[10] K. Takahashi, and M. Hagiya, “Abstraction of graph transformation using
temporal formulas,” Supplemental Volume of International Conference on
Dependable Systems and Networks (DSN-2003), pp. W-65–W-66, 2003.

14

[11] Y. Tanabe, T. Takai, T. Sekizawa, and K. Takahashi, “Preconditions of
properties described in CTL for statements manipulating pointers,” Sup-
plemental Volume of International Conference on Dependable Systems and
Networks (DSN2005), pp.228–234, June 28-July 1, 2005.

[12] Y. Tanabe, K. Takahashi, M. Yamamoto, A. Tozawa, and M. Hagiya, “A
Decision Procedure for Satisfiability of Modal Logics Implementable with
BDD”, Japan Society for Software Science and Technology (JSSST) Work-
shop on Programming and Programming Language (PPL) 2005, pp.5-16,
2005. (in Japanese)

[13] Y. Tanabe, K. Takahashi, M. Yamamoto, T. Sato, and M. Hagiya, “An
Implementation of a Decision Procedure for Satisfiability of Two-way CTL
Formulas Using BDD”, Computer Software - JSSST Journal, Vol.22, No.3
(2005), pp.154-166, 2005. (in Japanese with English abstract)

[14] A. Tozawa, “On binary tree logic for XML and its satisfiability test,” JSSST
Workshop on Programming and Programming Language (PPL) 2004, 2004.

15

時相論理の充足可能性判定器のための論理式生成法
(in English)
(算譜科学研究速報)
発行日：2007 年 2 月 19 日
編集・発行：独立行政法人産業技術総合研究所システム検証研究センター
同連絡先：〒563-8577 大阪府池田市緑丘 1-8-31
e-mail：informatics-inquiry@m.aist.go.jp
本掲載記事の無断転載を禁じます

A Method to Generate Formulae for Temporal Logic Satisfiability Checkers

 (Programming Science Technical Report)
Feb. 19, 2007
Research Center for Verification and Semantics (CVS)
National Institute of Advanced Industrial Science and Technology (AIST)
1-8-31 Midorigaoka, Ikeda, Osaka, 563-8577, Japan
e-mail: informatics-inquiry@m.aist.go.jp

・Reproduction in whole or in part without written permission is prohibited.

Systems and Computers in Japan © Copyright 2007 Wiley Periodicals, Inc.

	nakahyoushi_2007-003.pdf
	tr_2007-003_scj2349.pdf
	okuzuke.pdf

