
Searching for Mutual Exclusion Algorithms
using BDDs

Koichi Takahashi and Masami Hagiya

National Institute of Advanced Industrial Science and Technology
and

University of Tokyo
k.takahashi@aist.go.jp

http://staff.aist.go.jp/k.takahashi/

Abstract. The impact of verification technologies would be much
greater if they could not only verify existing information systems, but
also synthesize or discover new ones. In our previous study, we tried to
discover new algorithms that satisfy a given specification, by first defin-
ing a space of algorithms, and then checking each algorithm in the space
against the specification, using an automatic verifier, i.e., model checker.
Needless to say, the most serious problem of this approach is in search
space explosion. In this paper, we describe case studies in which we em-
ployed symbolic model checking using BDD and searched for synchro-
nization algorithms. By employing symbolic model checking, we could
speed up enumeration and verification of algorithms. We also discuss the
use of approximation for reducing the search space.

1 Introduction

Verification technologies have been successfully applied to guarantee the correct-
ness of various kinds of information systems, ranging from abstract algorithms
to hardware circuits. Among them is that of model checking, which checks the
correctness of a state transition system by traversing its state space [2]. The
success of model checking is mainly due to its ability to automatically verify a
state transition system without human intervention.

However, the impact of verification technologies would be much greater if
they could not only verify existing systems, but also synthesize or discover new
ones.

In our previous study [6, 7], we tried to discover new algorithms that satisfy
a given specification, by first defining a space of algorithms, and then check-
ing each algorithm in the space against the specification, using a verifier, i.e.,
model checker. Note that this approach is possible only if the employed verifier
is fully automatic. By the approach, we discovered new variants of the existing
algorithms for concurrent garbage collection, and a new algorithm for mutual
exclusion under some restrictions on parallel execution.

Perrig and Song have also taken a similar approach in the field of protocol
verification [10]. They enumerated protocols for asynchronous and synchronous



mutual authentication, and successfully discovered new ones by checking enu-
merated protocols using their protocol verifier, Athena [11].

Superoptimization in the field of compiler technologies is very close to the
above mentioned approach, though it does not employ a complete verifier [9, 5]. It
automatically synthesizes the code generation table of a compiler by enumerating
and checking sequences of machine instructions.

Needless to say, the most serious problem of this approach is in search space
explosion. The space of algorithms explodes if the size of enumerated algorithms
is not carefully bounded. It is therefore vital for the approach to efficiently
traverse the space of algorithms, employing various kinds of search heuristics.

In this paper, we investigate the possibility of simultaneously checking all
algorithms in the algorithm space by a single execution of the verifier. Algorithms
in the space are symbolically represented by a template containing parameters.
Each instantiation of the parameters in the template corresponds to a specific
algorithm. By symbolically verifying the template, we obtain constraints on the
parameters for the template to be correct.

By symbolic verification, it is possible to share computations for verification
among different algorithms, because computations with some parameters unin-
stantiated are shared by algorithms that correspond to instantiations of those
parameters.

By symbolically representing a template of algorithms, it is also possible to
apply approximation or abstraction [4] on the template. Before or during veri-
fication, algorithms can be approximated by another having similar but smaller
representation. If abstraction could be applied on symbolic representation, it
would greatly reduce the search space.

In this paper, we employ BDDs (binary decision diagrams) for symbolic repre-
sentation and verification [1, 2]. As a case study, we take the problem of searching
for synchronization algorithms for mutual exclusion without using semaphores,
which was also taken in our previous study [6, 7].

In our case studies, a template of algorithms is represented by a sequence of
pseudo-instructions including boolean parameters. We define two templates. The
first template has the original version of Peterson’s algorithm as an instance. The
second template has both Peterson and Dekker’s algorithms as instances. The
predicate defining the initial state, that of error states, and the state transition
relation are all represented by BDDs.

We checked the safety and liveness of the template using BDDs, and success-
fully obtained the constraints on the parameters. We compared the time required
for verifying a single concrete algorithm — Peterson’s algorithm (or Dekker’s al-
gorithm) — with that for checking the template, and gained speed-up of more
than two hundred times.

Finally, we made an experiment in which we collapsed BDDs with a small
Hamming distance. This is a first step towards using approximation and abstrac-
tion in the approach.

The rest of the paper is organized as follows. In the next section, we explain
the original versions of Peterson and Dekker’s algorithms for mutual exclusion,



and their safety and liveness properties. In Sections 3 and 4, we describe the
results of searching for variants of those algorithms by the above mentioned
approach. In Section 5, we report the result of a small experiment in which we
tried approximation during search. Section 5 is for conclusion.

2 Mutual Exclusion

The target of these case studies is to synthesize synchronization algorithms for
mutual exclusion without using semaphores.

Peterson and Dekker’s algorithms realize mutual exclusion among processes
without semaphores. Figure 1 shows an instance of Peterson’s algorithm for two
processes. An instance of Dekker’s algorithm is shown in Figure 2.

for (;;) {

// beginning of the entry part

flags[me] = true;

turn = you;

while (flags[you] == true) {

if (turn != you) break;

} // end of the entry part

// the critical section

// beginning of the finishing part

flags[me] = false;

// end of the finishing part

// the idle part

}

Fig. 1. Peterson’s algorithm.

In the figures, me denotes the number of the process that is executing the
code (1 or 2), and you denotes the number of the other process (2 or 1). The
entry part realizes mutual execution before entering the critical section, and the
finishing part is executed after the critical section. The idle part represents a
process-dependent task.

The safety property of mutual exclusion algorithm is:

Two processes do not simultaneously enter the critical section.

Liveness is:

There does not exist an execution path (loop) that begins and ends with
the same state, at which one process is in its entry part, and satisfies the
following conditions.



for (;;) {

// beginning of the entry part

flags[me] = true;

while (flags[you] == true) {

if (turn != me) {

flags[me] = false;

while (turn != me) {}

flags[me] = true;

}

} // end of the entry part

// the critical section

// beginning of the finishing part

turn = you;

flags[me] = false;

// end of the finishing part

// the idle part

}

Fig. 2. Dekker’s algorithm.

– The process stays in the entry part on the execution path, i.e., it
does not enter the critical section.

– Both processes execute at least one instruction on the execution path.

The results of searching for variants of these algorithms are described in the
next two sections.

3 Search for Variants of Peterson’s Algorithm

In this section, we describe the first case study. We make a template which has
Peterson’s algorithm as an instance, and check the safety and liveness of the
template using BDDs.

3.1 Pseudo-code

We represent Peterson’s algorithm using pseudo-code consisting of pseudo-instructions.
The pseudo-code may refer to three variables, each of which holds a boolean
value.

– FLAG1: This variable corresponds to flags[1] in Figure 1.
– FLAG2: This variable corresponds to flags[2] in Figure 1.
– FLAG0: This variable corresponds to turn in Figure 1. FLAG0=true means

turn=2, and FLAG0=false means turn=1,



Each instruction in the pseudo-code is in one of the following three forms.

SET CLEAR(p),L
IF WHILE(p),L1,L2

NOP,L1,L2

The operands L, L1 and L2 in the instructions denote addresses in the pseudo-
code. In SET CLEAR(p),L, the operand L should point to the next address in
the pseudo-code.

The operators SET CLEAR and IF WHILE have a three-bit parameter, denoted
by p. Each value of the parameter results in a pseudo-instruction as defined in
Figures 3 and 4 for each process. In the figures, b denotes 0 or 1.

The instruction

NOP,L1,L2

jumps to either L1 or L2 nondeterministically.

Process 1 Process 2

SET CLEAR(b00),L goto L goto L

SET CLEAR(b01),L FLAG0 := b; FLAG0 := not(b);
goto L goto L

SET CLEAR(b10),L FLAG1 := b; FLAG2 := b;
goto L goto L

SET CLEAR(b11),L FLAG2 := b; FLAG1 := b;
goto L goto L

Fig. 3. SET CLEAR

Process 1 Process 2

IF WHILE(b00),L1,L2 goto L1 goto L1

IF WHILE(b01),L1,L2 IF FLAG0=b IF FLAG0=not(b)
then goto L1 then goto L1

else goto L2 else goto L2

IF WHILE(b10),L1,L2 IF FLAG1=b IF FLAG2=b
then goto L1 then goto L1

else goto L2 else goto L2

IF WHILE(b11),L1,L2 IF FLAG2=b IF FLAG1=b
then goto L1 then goto L1

else goto L2 else goto L2

Fig. 4. IF WHILE



The original version of Peterson’s algorithm for mutual exclusion can be
represented by the following pseudo-code.

0: SET CLEAR(110),1
1: SET CLEAR(101),2
2: IF WHILE(111),3,4
3: IF WHILE(001),4,2
4: NOP,5,5
5: SET CLEAR(010),6
6: NOP,6,0

The first column of the pseudo-code denotes the address of each instruction.
The fourth instruction, 4: NOP,5,5, represents the critical section, and the sixth
instruction, 6: NOP,6,0, the part that is specific to each process. Each process
is allowed to loop around the sixth instruction.

We then parameterize five instructions in Peterson’s algorithm as in Figure 5.
The safety and liveness of this parameterized code were verified as described in

0: SET CLEAR(p0),1

1: SET CLEAR(p1),2

2: IF WHILE(p2),3,4

3: IF WHILE(p3),4,2

4: NOP,5,5

5: SET CLEAR(p4),6

6: NOP,6,0

Fig. 5. Template 1

the next section.

3.2 Verification

The initial state of the state transition system is defined as a state that satisfies
the following condition.

PC1 = PC2 = 0
FLAG0 = FLAG1 = FLAG2 = 0

In the above condition, PC1 and PC2 denote the program counter of Process 1 and
Process 2, respectively. Let I(x) denote the predicate expressing the condition,
where x ranges over states. I(x) holds if and only if x is the initial state.

The safety of the state transition system is defined as unreachability of an
error state that satisfies the following condition.

PC1 = PC2 = 4



In an error state, both processes enter their critical section simultaneously. The
system is safe unless it reaches an error state from the initial state. Let E(x)
denote the predicate expressing the condition.

Let T (x, y) mean that there is a one-step transition from state x to state y,
and T ∗(x, y) denote the reflexive and transitive closure of T (x, y). The safety of
the system is then expressed by the following formula.

¬∃xy. I(x) ∧ T ∗(x, y) ∧ E(y)

We can describe the liveness for Process 1 of the system as non-existence of
an infinite path on which

0 ≤ PC1 ≤ 3

is always satisfied though both processes are infinitely executed. The condition,
0 ≤ PC1 ≤ 3, means that Process 1 is trying to enter its critical section. S(x)
denote the predicate expressing the condition.

We verify the liveness as follows. Let T1(x, y) denote the one-step transition
relation for Process 1. T1(x, y) holds if and only if state y is obtained by executing
Process 1 for one step from x. Similarly, let T2(x, y) denote the one-step transi-
tion relation for Process 2. Note that T (x, y) is equivalent to T1(x, y)∨ T2(x, y).
We then define the following three predicates.

T ′
1(x, y) = T1(x, y) ∧ S(x)

T ′
2(x, y) = T2(x, y) ∧ S(x)

T ′(x, y) = T (x, y) ∧ S(x)

For any predicate Z(x) on state x, and any binary relation R(x, y) on states
x and y, we define the relation, denoted by Z ◦ R, as follows.

(Z ◦ R)(x) = ∃y. Z(y) ∧ R(x, y)

Z ◦ R is also a predicate on states.
For verifying the liveness of the system, we compute the following limit of

predicates.

S ◦ T ′
1 ◦ T ′∗ ◦ T ′

2 ◦ T ′∗◦
T ′

1 ◦ T ′∗ ◦ T ′
2 ◦ T ′∗◦

T ′
1 ◦ T ′∗ ◦ T ′

2 ◦ T ′∗ ◦ · · ·

This limit always exists, because the sequence of predicates

S ◦ T ′
1 ◦ T ′∗

S ◦ T ′
1 ◦ T ′∗ ◦ T ′

2

S ◦ T ′
1 ◦ T ′∗ ◦ T ′

2 ◦ T ′∗

S ◦ T ′
1 ◦ T ′∗ ◦ T ′

2 ◦ T ′∗ ◦ T ′
1

S ◦ T ′
1 ◦ T ′∗ ◦ T ′

2 ◦ T ′∗ ◦ T ′
1 ◦ T ′∗

. . .



is monotonically decreasing. For example, we can prove the second predicate is
smaller than the first one as follows. S◦T ′

1◦T ′∗◦T ′
2 ⊆ S◦T ′

1◦T ′∗◦T ′ ⊆ S◦T ′
1◦T ′∗.

Let us denote this limit by S′. It expresses the beginning of an infinite path
on which S always holds and both processes are infinitely executed, i.e., a state
satisfies the limit if and only if there exists such an infinite path from the state.
The liveness is then equivalent to unreachability from the initial state to a state
satisfying the limit.

¬∃xy. I(x) ∧ T ∗(x, y) ∧ S′(y)

The liveness for Process 2 can be symmetrically described as that for Pro-
cess 1. The whole system satisfies the liveness if it holds for both processes.

Since there are 7 pseudo-instructions in the pseudo-code, the program counter
of each process can be represented by three bits. Therefore, a state in the state
transition system can be represented by nine boolean variables; three are used
to represent the program counter of each process, and three for the three shared
variables.

There are five parameters in the pseudo-code, so fifteen boolean variables
are required to represent the parameters. Let p denote the vector of the fifteen
boolean variables. All the predicates and relations introduced so far are consid-
ered indexed by p. For example, we should have written Tp(x, y).

Predicates such as Ip(x) and Sp(x) contain 24 boolean variables, and relations
such as Tp(x, y) contain 33 boolean variables. All these predicates and relations
are represented by OBDD (ordered binary decision diagrams)

We employed the BDD package developed by David E. Long and distributed
from CMU [8]. The verification program was written in C by hand. The essential
part of the program is shown in the appendix.

Variables in predicates and relations are ordered as follows.

– variables in x first,
– variables in y (if any) next, and
– variables in p last.

We have tried the opposite order but never succeeded in verification.
By the above order, predicates such as Sp(x) are decomposed into a collection

of predicates on p as follows.

if ...x... then ...p...
else if ...x... then ...p...
else ...

The value of x is successively checked by a series of conditions, and for each
condition on x, a predicate on p is applied.

Similarly, relations such as Tp(x, y) are decomposed as follows.

if ...x...y... then ...p...
else if ...x...y... then ...p...
else ...



3.3 Result

We checked the safety and liveness of the system as described in the previous
section. The experiments are made by Vectra VE/450 Series8, from Hewlett-
Packard.

– It took 0.853 seconds to check the original version of Peterson’s algorithm.
The result was, of course, true.

– It took 117.393 seconds to check the template of algorithms containing a
fifteen-bit parameter.

Since the template contains fifteen boolean variables, checking the template
amounts to checking 215 instances of the template simultaneously. If we sim-
ply multiply 0.853 by 215 and compare the result with 117.393, we found speed
up of about 238 times.

The size of the BDD that represents the constraints on the parameters is
93. Only 16 instances of parameters satisfy the constraints. So, we found 15
variants of Peterson’s algorithm. But they are essentially equivalent to Peterson’s
algorithm. In the variants, the interpretation of some shared variables is simply
reversed.

4 Search for Variants of Peterson’s or Dekker’s Algorithm

In this section, we show the second case study. We apply the method described
in the previous section to another template. Since Dekker’s algorithm is very
similar to Peterson’s, we make a template which cover both algorithms.

4.1 Pseudo-code

We define another template which has both Dekker and Peterson’s algorithms as
instances. In order to define such a template with a small number of parameters,
we modify instructions as follows.

SET CLEAR(p),L
JUMP IF TURN(p),L00,L01,L10,L11

JUMP IF FLAG YOU(p),L00,L01,L10,L11

NOP,L1,L2

The instruction NOP is the same as in the previous section.
The operator SET CLEAR is slightly changed to reduce parameters. The pa-

rameter p of SET CLEAR(p) has two-bit value. Each value of the parameter results
in a pseudo-instruction as defined in Figure 6.

The operators JUMP IF TURN and JUMP IF FLAG YOU have a three-bit param-
eter and four operands. The operands denote addresses in the pseudo-code. The
intuitive meaning of the operands is that L00 points to the next address, L01

points to the address of the critical section, L10 points to the address of the be-
ginning of the loop of the entry part, and L10 points to the current address. Each



Process 1 Process 2

SET CLEAR(b0),L FLAG0 := b; FLAG0 := not(b);
goto L goto L

SET CLEAR(b1),L FLAG1 := b; FLAG2 := b;
goto L goto L

Fig. 6. Modified SET CLEAR

Process 1 Process 2

JUMP IF TURN(b00),L00,L01,L10,L11 IF FLAG0 = b IF FLAG0 = not(b)
THEN goto L00 THEN goto L00

ELSE goto L00 ELSE goto L00

JUMP IF TURN(b01),L00,L01,L10,L11 IF FLAG0 = b IF FLAG0 = not(b)
THEN goto L01 THEN goto L01

ELSE goto L00 ELSE goto L00

JUMP IF TURN(b10),L00,L01,L10,L11 IF FLAG0 = b IF FLAG0 = not(b)
THEN goto L10 THEN goto L10

ELSE goto L00 ELSE goto L00

JUMP IF TURN(b11),L00,L01,L10,L11 IF FLAG0 = b IF FLAG0 = not(b)
THEN goto L11 THEN goto L11

ELSE goto L00 ELSE goto L00

Fig. 7. JUMP IF TURN

Process 1 Process 2

JUMP IF FLAG YOU(b00),L00,L01,L10,L11 IF FLAG2 = b IF FLAG1 = b
THEN goto L00 THEN goto L00

ELSE goto L00 ELSE goto L00

JUMP IF FLAG YOU(b01),L00,L01,L10,L11 IF FLAG2 = b IF FLAG1 = b
THEN goto L01 THEN goto L01

ELSE goto L00 ELSE goto L00

JUMP IF FLAG YOU(b10),L00,L01,L10,L11 IF FLAG2 = b IF FLAG1 = b
THEN goto L10 THEN goto L10

ELSE goto L00 ELSE goto L00

JUMP IF FLAG YOU(b11),L00,L01,L10,L11 IF FLAG2 = b IF FLAG1 = b
THEN goto L11 THEN goto L11

ELSE goto L00 ELSE goto L00

Fig. 8. JUMP IF FLAG YOU



value of the parameter results in a pseudo-instruction as defined in Figures 7 and
Figures 8.

We define a template as in Figure 9. Note that we fixed the values of some
parameters to reduce the search space. In the template, each parameter has
two-bit value. So the template contains sixteen boolean variables.

0: SET CLEAR(11),1
1: SET CLEAR(p1),2

2: JUMP IF FLAG YOU(0p2),3,8,2,2

3: JUMP IF TURN(1p3),4,8,2,3

4: JUMP IF TURN(0p4),5,8,2,4

5: SET CLEAR(p5),6

6: JUMP IF TURN(1p6),7,8,2,6

7: SET CLEAR(p7),2

8: NOP,9,9

9: SET CLEAR(p8),10

10: SET CLEAR(01),11

11: NOP,0,11

Fig. 9. Template 2

The template contains both algorithms as instances. Dekker’s algorithm can
be represented by the following pseudo-code.

0: SET CLEAR(11),1
1: SET CLEAR(11),2
2: JUMP IF FLAG YOU(001),3,8,2,2
3: JUMP IF TURN(100),4,8,2,3
4: JUMP IF TURN(010),5,8,2,4
5: SET CLEAR(01),6
6: JUMP IF TURN(111),7,8,2,6
7: SET CLEAR(11),2
8: NOP,9,9

9: SET CLEAR(10),10
10: SET CLEAR(01),11
11: NOP,0,11

The Peterson’s algorithm can be represented by the following pseudo-code.

0: SET CLEAR(11),1
1: SET CLEAR(10),2
2: JUMP IF FLAG YOU(001),3,8,2,2
3: JUMP IF TURN(110),4,8,2,3
4: JUMP IF TURN(001),5,8,2,4
5: SET CLEAR(00),6
6: JUMP IF TURN(100),7,8,2,6
7: SET CLEAR(00),2
8: NOP,9,9



9: SET CLEAR(01),10
10: SET CLEAR(01),11
11: NOP,0,11

4.2 Verification

Verification of the template goes almost in the same manner as in the previous
section.

In this verification, the condition of an error state is

PC1 = PC2 = 8.

For the liveness, we modify the condition of the starvation loop of Process 1 as
follows.

0 ≤ PC1 ≤ 7

Since there are twelve pseudo-instructions in the pseudo-code, the representa-
tion of the program counter of each process requires four bits. Therefore, a state
in the state transition system can be represented by eleven boolean variables.
Sixteen boolean variables are required to represented the parameters.

4.3 Result

We checked the safety and liveness of the system on the same machine as in the
previous section.

– It took 10.195 seconds to check the Peterson’s algorithm. The result was, of
course, true.

– It took 19.506 seconds to check the Dekker’s algorithm. The result was, of
course, true.

– It took 741.636 seconds to check the template of algorithms containing a
sixteen-bit parameter.

We found speed up of about 900 times at least.
The size of the BDD that represents the constraints on the parameters is

62. There are about 400 solutions of the constraints. We found that just one
solution represents the original Dekker’s algorithm, and the remaining solutions
essentially represent Peterson’s algorithm.

5 Approximation

Remember that according to the variable ordering we adopted in BDDs, a pred-
icate on states indexed by p is represented as a collection of sub-predicates on p
as follows.



if C0(x) then P0(p)
else if C1(x) then P1(p)
else if C2(x) then P2(p)
else ...

The sub-predicates, P0(p), P1(p), P1(p), · · ·, occupy the branches of the entire
predicate. We tried to reduce the size of such a predicate by collapsing some of
the sub-predicates on p with a small Hamming distance. This is considered a
first step towards using approximation in our approach.

The Hamming distance between two predicates Pi(p) and Pj(p) is the frac-
tion of assignments to p that make Pi(p) and Pj(p) different. For example, the
Hamming distance between p0 ∧ p1 and p0 ∨ p1 is 1/2, since they agree on the
assignments (p0 = 0, p1 = 0) and (p0 = 1, p1 = 1), while they do not agree on
the assignments (p0 = 0, p1 = 1) and (p0 = 1, p1 = 0).

Let θ be some threshold between 0 and 1. By collapsing sub-predicates Pi(p)
and Pj(p), we mean to replace both Pi(p) and Pj(p) with Pi(p)∨Pj(p), provided
that their Hamming distance is less than θ. After Pi(p) and Pj(p) are replaced
with Pi(p) ∨ Pj(p), the size of the entire predicate is reduced because the BDD
node representing Pi(p) ∨ Pj(p) is shared. We note that this collapsed predi-
cate R′ by replacing the disjunction is bigger than the original predicate R, i.e.
∀x. R(x) ⇒ R′(x).

We made the following experiment. We first computed the reachability pred-
icate Rp(y) defined as follows.

∃x. Ip(x) ∧ T ∗
p (x, y)

We then collapsed Rp(y) according to some threshold θ, and continued verifica-
tion using the collapsed R′

p(y).
The discovered algorithms by using R′

p(y) always satisfy the safety and the
liveness. The expression of safety is ¬∃y. Rp(y) ∧ E(y). Because the collapsed
predicate is bigger, ∀p. (¬∃y. R′

p(y) ∧ E(y)) ⇒ (¬∃y. Rp(y) ∧ E(y)). If the
algorithm with parameter p satisfies the safety under the collapsed R′

p(y), it
satisfies the safety. This discussion can be used for the liveness, because the
expression of the liveness is ¬∃y. Rp(y) ∧ S′(y).

We successfully obtained constraints on the parameters. We summarize the
results in Figure 10. In the figure, if the size of the final result is marked as ’−’,
it means that verification failed, i.e., no instantiation of parameters could satisfy
the safety and liveness.

Using abstract BDDs [3] is another approach to reduce the size of BDDs. It is
similar to ours in that abstract BDDs are obtained by merging BDD nodes whose
abstract values coincide. Abstract values of BDD nodes are given in advance.
In our case, since it is difficult to define such abstraction before the search, we
dynamically collapse the algorithm space according to the Hamming distance of
BDDs.



Template Threshold Size of Rp(y) Size of final result
θ w/ collapse w/o collapse w/ collapse w/o collapse

Template 1 0.03 175 278 38 93

Template 1 0.05 145 278 − 93

Template 2 0.15 50 429 30 62

Template 2 0.20 39 429 − 62

Fig. 10. Results of collapsing

6 Conclusion

We searched for mutual exclusion algorithms using BDDs. Since the algorithm
space was given by a template, we could simultaneously check all algorithms in
the algorithm space by a single execution of the verifier. We gained speed-up of
several hundred times compared with verifying all algorithms one by one.

The result of the second case study might suggest that Peterson’s algorithm
could be discovered as a variant of Dekker’s algorithm. In the previous study [7],
we searched for variants of Dekker’s algorithm, but we could not find Peterson’s.
This was because we fixed the finishing part as that of the original version of
Dekker’s. Designing an algorithm space that contains interesting algorithms is
not easy. In these case studies, we found only known algorithms.

In this case study, we could not find new algorithms. Algorithm space we
used may be too closed to the original algorithms. The construction of effective
algorithm space is a problem. In superoptimizer, the candidates are generated
independent to the original code. The independency to the original one may be
a key to find out essential new algorithms.

Analysis of the resulting constraints obtained by verification was also a dif-
ficult task. We examined all solutions of the constraints by hand, and we found
out the discovered algorithms are equivalent to the original algorithms. Auto-
matic check of equivalence of algorithms greatly help our method. We should
develop automatic equivalence checker.

Acknowledgments

The work reported in this paper was supported, in part, by the Ministry of Ed-
ucation, Science, Sports and Culture, under the grants 11480062 and 10143105.

References

1. R. E. Bryant. Graph Based Algorithms for Boolean Function Manipulation. IEEE
Transactions on Computers, Vol.C-35, No.8, pp.677–691, 1986.

2. Edmund M. Clarke, Jr., Orna Grumberg, and Doron A. Peled. Model Checking,
The MIT Press, 1999.



3. Edmund M. Clarke, Somesh Jha, Yuan Lu, and Dong Wang. Abstact BDDs: A
Technique for Using Abstraction in Model Checking. Correct Hardware Design and
Verification Methods, Lecture Notes in Computer Science, Vol.1703, pp.172–186,
1999.

4. Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lattice model
for static analysis of programs by construction or approximation of fixpoints. Con-
ference Record of the 4th ACM Symposium on Principles of Programming Lan-
guages, pp.238–252, 1977.

5. Torbjörn Granlund and Richard Kenner. Eliminating Branches using a Super-
optimizer and the GNU C Compiler. PLDI’92, Proceedings of the conference on
Programming language design and implementation, pp.341–352, 1992.

6. Masami Hagiya. Discovering Algorithms by Verifiers. Programming Symposium,
Information Processing Society of Japan, pp.9–19, 2000, in Japanese.

7. Masami Hagiya and Koichi Takahashi. Discovery and Deduction, Discovery Sci-
ence, Third International Conference, DS 2000 (Setsuo Arikawa and Shinichi Mor-
ishita Eds.), Lecture Notes in Artificial Intelligence, Vol.1967, pp.17–37, 2000.

8. David E. Long. bdd - a binary decision diagram (BDD) package, 1993.
http://www.cs.cmu.edu/~modelcheck/code.html

9. Henry Massalin. Superoptimizer: A Look at the Smallest Program. Proceedings
of the Second International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS II, pp.122–126, 1987.

10. Adrian Perrig and Dawn Song. A First Step on Automatic Protocol Generation of
Security Protocols. Proceedings of Network and Distributed System Security, 2000
Feb.

11. Dawn Xiaodong Song. Athena: a New Efficient Automatic Checker for Security
Protocol Analysis, Proceedings of the 12th IEEE Computer Security Foundations
Workshop, pp.192–202, 1999.

Appendix

In this appendix, we show the essential part of the verification program of Sec-
tion 3.2. It employs the BDD package developed by David E. Long and dis-
tributed from CMU [8]. Functions beginning with “bdd ” are from the bdd
package. They include, for example, the following functions.

– bdd not: returns the negation of a BDD.
– bdd and: returns the conjunction of BDDs.
– bdd or: returns the disjunction of BDDs.

Their first argument is the bdd manager as defined in the bdd package [8] and
is of the type bdd manager. The second and third arguments are BDDs of the
type bdd.

The function bdd exists computes the existential quantification of a given
BDD. Before calling bdd exists, the array of variables to be quantified should
be specified as follows.

bdd_temp_assoc(bddm, y, 0);
bdd_assoc(bddm, -1);



The function bdd rel prod computes the relational product of given BDDs.
Semantically, it first computes the conjunction of the second and third arguments
and then computes the existential quantification as bdd exists does.

We also defined some auxiliary functions described below.
The C function bdd closure relation takes the following seven arguments

and computes the closure of a given relation.

– bdd manager bddm: the bdd manager.
– int AND: the flag specifying whether the closure is computed by conjunction

(if it is 1) or disjunction (if it is 0).
– bdd g: the initial predicate.
– bdd f: the relation whose closure is computed. It contains variables in x and

y.
– bdd *x: the array of the variables in f and g.
– bdd *y: the array of the variables in f.
– bdd *z: the array of temporary variables.

Let x denote the vector of variables in x, y the vector of variables in y. It is
assumed that g is a predicate on x and f is a relation between x and y. If the
value of the flag AND is 0, then the above function computes and returns the
following predicate on y.

∃x. g(x) ∧ f∗(x, y)

The return value of the function is of the type bdd.
Following are some more auxiliary functions.

– bdd rename: renames variables in a BDD and returns the resulting BDD.
– bdd equal int: constrains an array of variables as a binary number. For

example,

bdd_equal_int(bddm, 3, pc11, 4)

returns the bdd expressing the following condition.
pc11[0] = pc11[1] = 0 ∧
pc11[2] = 1

– bdd and3: returns the conjunction of three BDDs.
– bdd or4: returns the disjunction of four BDDs.

The function smash makes approximation as described in Section 5. It takes
the bdd manager, the BDD to be collapsed, and the threshold value. The iden-
tifier smash threshold must have been defined as a C macro.

Following is the main function of the verification program. In the initialization
part, omitted from the following code, the transition relations are initialized as
follows.

– t: the one-step transition relation.
– t1: the one-step transition relation for Process 1.
– t2: the one-step transition relation for Process 2.



States are represented by nine variables. In the main function, the arrays x,
y and z store nine variables representing states. Since they are null terminated,
their size is 10. x denotes the state before a transition and y the state after a
transition. z consists of temporary variables. The pointers pc01, pc02, pc11, and
pc12 point to the program counters in x and y.

int main()

{

bdd_manager bddm;

bdd x[10];

bdd *pc01 = &x[0];

bdd *pc02 = &x[3];

bdd *vs0 = &x[6];

bdd y[10];

bdd *pc11 = &y[0];

bdd *pc12 = &y[3];

bdd *vs1 = &y[6];

bdd z[10], *p, *q;

bdd t, t1, t2,

initial, reachable, conflict;

bdd starving, starving_t,

starving_t1, starving_t2;

bdd starvation, s, s0;

bdd e;

bddm = bdd_init();

...

/* initialization */

...

initial = bdd_equal_int(bddm, 9, y, 0);

reachable = bdd_closure_relation(bddm, 0,

initial,

t, x, y, z);

#ifdef smash_reachable

reachable = smash(bddm, reachable,

smash_reachable);

#endif

conflict = bdd_and3(bddm, reachable,

bdd_equal_int(bddm, 3,

pc11, 4),

bdd_equal_int(bddm, 3,

pc12, 4));

bdd_temp_assoc(bddm, y, 0);

bdd_assoc(bddm, -1);



conflict = bdd_exists(bddm, conflict);

starving = bdd_or4(bddm,

bdd_equal_int(bddm, 3,

pc01, 0),

bdd_equal_int(bddm, 3,

pc01, 1),

bdd_equal_int(bddm, 3,

pc01, 2),

bdd_equal_int(bddm, 3,

pc01, 3));

starving_t = bdd_and(bddm, starving, t);

starving_t1 = bdd_and(bddm, starving, t1);

starving_t2 = bdd_and(bddm, starving, t2);

s = starving;

do {

printf("iteration for fairness\n");

s0 = s;

s = bdd_rename(bddm, s, x, y);

bdd_temp_assoc(bddm, y, 0);

bdd_assoc(bddm, -1);

s = bdd_rel_prod(bddm, starving_t1, s);

s = bdd_closure_relation(bddm, 0, s,

starving_t,

y, x, z);

s = bdd_rename(bddm, s, x, y);

bdd_temp_assoc(bddm, y, 0);

bdd_assoc(bddm, -1);

s = bdd_rel_prod(bddm, starving_t2, s);

s = bdd_closure_relation(bddm, 0, s,

starving_t,

y, x, z);

} while (s0 != s);

s = bdd_rename(bddm, s, x, y);

bdd_temp_assoc(bddm, y, 0);

bdd_assoc(bddm, -1);

starvation = bdd_rel_prod(bddm, reachable, s);

e = bdd_and(bddm,

bdd_not(bddm, conflict),

bdd_not(bddm, starvation));

}


