
AIST-PS-2005-013

Sufficient Completeness Checking
with Propositional Tree Automata

Joe Hendrix1, Hitoshi Ohsaki2, and José Meseguer1

1University of Illinois at Urbana-Champaign
{jhendrix,meseguer}@uiuc.edu

2National Institute of Advanced Industrial Science and Technology, &
PRESTO - Japan Science and Technology Agency

ohsaki@ni.aist.go.jp

Su�cient Completeness Checking

with Propositional Tree Automata

Joe Hendrix1, Hitoshi Ohsaki2;3, and Jos�e Meseguer1

1University of Illinois at Urbana-Champaign

fjhendrix,meseguerg@uiuc.edu

2National Institute of Advanced Industrial Science and Technology, and
3PRESTO, Japan Science and Technology Agency

ohsaki@ni.aist.go.jp

Abstract. Su�cient completeness means that enough equations have
been speci�ed, so that the functions of an equational speci�cation are
fully de�ned on all relevant data. This is important for both debugging
and formal reasoning. In this work we extend su�cient completeness
methods to handle expressive speci�cations involving: (i) partiality; (ii)
conditional equations; and (iii) deductionmodulo axioms. Speci�cally, we
give useful characterizations of the su�cient completeness property for
membership equational logic (MEL) speci�cations having features (i){
(iii). We also propose a kind of equational tree automata [18, 22], called
propositional tree automata (PTA) and identify a class of MEL speci�-
cations (called PTA-checkable) whose su�cient completeness problem is
equivalent to the emptiness problem of their associated PTA. When the
reasoning modulo involves only symbols that are either associative and
commutative (AC) or free, we further show that the emptiness of AC-PTA
is decidable, and therefore that the su�cient completeness of AC-PTA-
checkable speci�cations is decidable. The methods presented here can
serve as a basis for building a next-generation su�cient completeness
tool for MEL speci�cations having features (i){(iii). These features are
widely used in practice, and are supported by languages such as Maude
and other advanced speci�cation and equational programming languages.

Keywords: su�cient completeness, equational logic, tree automata

1 Introduction

Su�cient completeness of an equational speci�cation means that enough equa-
tions have been speci�ed, so that the functions of the algebraic data type de�ned
by the speci�cation are fully de�ned on all relevant data elements. This is an
important property to check, both to debug and formally reason about speci�-
cations and equational programs. For example, many inductive theorem proving
techniques are based on the constructors building up the data and crucially
depend on the speci�cation being su�ciently complete.

In practice, there is a need to have expressive equational speci�cation for-
malisms that match the needs of real applications, and correspondingly to extend
su�cient completeness methods to handle such formalisms. This work presents

new contributions extending su�cient completeness methods in several useful di-
rections, namely: (i) to handle partiality; (ii) to allow conditional speci�cations;
and (iii) to support equational reasoning modulo axioms. These extensions are
needed in practice because: (i) functions de�ned on data types are often partial ;
(ii) many languages support conditional speci�cations; and (iii) functions often
assume algebraic properties of their underlying data. For example, functions on
sets or multisets are much more simply speci�ed using the fact that set and
multiset union are associative and commutative.

Of course, there is tension between expressiveness of speci�cations and de-
cidability of su�cient completeness. It is well-known that checking su�cient
completeness is in general undecidable even for unconditional speci�cations [7,
8]. Partiality makes decidability even harder to get, and in the presence of as-
sociativity axioms decidability is lost for non-linear con
uent and terminating
equations [13]. In our view, the best way to deal with this tension is not to give up
on the expressive speci�cations that are often needed in practice and for which
su�cient completeness is undecidable. We advocate a two-pronged approach.
First, the su�cient completeness problem should be studied for increasingly
more expressive formalisms, and the set of decidable speci�cations should like-
wise be expanded as much as possible. Second, su�cient completeness checking
algorithms should be coupled with inductive theorem proving techniques that
can discharge proof obligations generated when the input speci�cation falls out-
side of the decidable classes. We refer the reader to [9, 11] for ideas on coupling
su�cient completeness and inductive theorem proving.

In this paper, we focus on advancing the �rst prong in several ways. Our �rst
contribution is to characterize su�cient completeness in a more general setting
to support the extensions (i){(iii) mentioned above. For this purpose, we use
membership equational logic (MEL) [2, 16] to allow conditional speci�cation of
partial functions (see [16] for a survey of partial speci�cation formalisms and the
use of MEL in this context). In MEL atomic sentences are either equations t= t0,
or memberships t : s stating that a term t has a sort s, where t having a sort is
equivalent to t being de�ned. The key idea is that a partial function's domain
is axiomatized by conditional membership axioms. We precisely de�ne the su�-
cient completeness property for conditional MEL speci�cations which can have
extra variables in their conditions and can be de�ned modulo a set E of uncondi-
tional equations. We de�ne su�cient completeness for both MEL theories of this
kind and their corresponding conditional rewrite theories when the equations are
used as rewrite rules. We also characterize speci�cations for which both notions
coincide. Finally for a large class of systems, we give conditions equivalent to
su�cient completeness which can be the basis of a checking algorithm. These
theoretical developments directly apply to the analysis of functional modules
in the Maude language [3], which are MEL speci�cations supporting deduction
modulo axioms such as associativity, commutativity, and identity.

Our second contribution is to identify a class of speci�cations whose su�cient
completeness problem is equivalent to the emptiness problem of an associated
equational tree automaton. The class in question, called PTA-checkable speci�-
cations, consists of those MEL speci�cations that are left-linear, unconditional,

2

ground weakly normalizing, ground con
uent, and ground sort-decreasing. An
important aspect of this is the de�nition of a kind of equational tree automata,
which we call propositional tree automata (PTA). PTA are closed under boolean
operations and can encode the su�cient completeness problem in a more com-
pact way than conventional tree automata.

As the axioms E used to rewrite modulo can be arbitrary, the emptiness
problem for general PTA is undecidable. However in practice, we need not con-
sider arbitrary axioms E, but rather focus on widely applicable axioms such as
associativity, commutativity, and identity for which matching algorithms exist.
This leads us to our third contribution, namely a proof of the decidability of
the PTA emptiness problem | and therefore of the su�cient completeness of
PTA-checkable speci�cations | when the set E of equational axioms speci�es
operators which are either both associative and commutative (AC) or free.

Related Work

Instead of a comprehensive survey on su�cient completeness, we mention some
related work to place things in context. Su�cient completeness of MEL speci�ca-
tions was �rst studied in [2]. The de�nition and methods presented in this paper
substantially extend and generalize those in [9], which in turn had generalized
those in [2], allowing a much wider class of MEL speci�cations to be checked.
Su�cient completeness itself goes back to Guttag's thesis [7] (but see [8] for a
more accessible treatment). An early algorithm for handling unconditional linear
speci�cations is due to Nipkow and Weikum [17]. For a good review of the liter-
ature up to the late 80s, as well as some important decidability/undecidability
and complexity results, see [12, 13]. A more recent development is the casting of
su�cient completeness as tree automata (TA) decision problems: see Chapter 4
of [4] and references there. Our work can be seen as a further contribution to
the TA approach to su�cient completeness, particularly in proposing PTA as a
new tree automata framework ideally suited for su�cient completeness checking
and in extending TA methods and results to the equational cases.

In addition to the TA approach, a widely used alternative approach to suf-
�cient completeness is based on the incremental constructor-based narrowing
of patterns. Su�cient completeness checkers in this category include Spike [1],
the RRL [11] theorem prover, and the current Maude Su�cient Completeness
Checker (SCC), which is integrated with the Maude inductive theorem prover [9].
Although constructor-based narrowing methods have been extended to the AC

case in the context of unsorted speci�cations by Jouannaud and Kounalis [10],
it seems much harder to apply this extension in the context of order-sorted or
MEL speci�cations. For this reason, an important practical motivation of this
work is to eventually replace the current Maude SCC, which cannot handle the
AC case, by a next-generation tool based on the PTA methods presented here.

The paper is organized as follows. In sections 2 and 3, we recall membership
equational logic, and introduce a very expressive class of rewrite systems called
conditional equational rewriting/membership (CERM) systems. We de�ne su�-
cient completeness in both these contexts, and give conditions under which these

3

de�nitions coincide. In Section 4, we give conditions on which to base methods
for checking su�cient completeness, and introduce a new class of equational tree
automata, called propositional tree automata (PTA). In Section 5, we show how
the su�cient completeness problem can be formulated as a PTA emptiness prob-
lem for a fairly broad class of speci�cations. Finally in Section 6, we show how
to decide emptiness of PTA for the AC case.

2 Preliminaries

A membership equational logic (MEL) signature � is a triple � = (K;F ;S),
in which: K is a set of kinds; F = fF~k;kg(~k;k)2K��K is a K-kinded family of

function symbols such that F~k;k and F~k;k are disjoint for distinct k; k
0 2 K; and

S = fSkgk2K is a disjoint K-kinded family of sets of sorts. A K-kinded list of
variables ~x = x1 : k1; : : : xn : kn is �-distinct when the x1; : : : xn are pairwise
disjoint and also distinct from any constant in F , but the kinds k1; : : : kn in
the list can be repeated. For each k 2 K, T�(~x)k denotes the set of well-kinded
terms with kind k formed from the function symbols in F and variables in ~x.
T�(~x) =

S
k2K T�(~x)k denotes the set of all well-kinded terms. The set of all

ground terms, T� , and set of all ground terms with kind k, T�;k, are sets of terms
without variables. The function vars : T�(~x)! P(~x) is the mapping from a term
t 2 T�(~x) to the variables appearing in t. Let � : k be a distinguished variable
called a hole. A k-context is a term C 2 T�(~x;� : k) with a single occurrence
of the variable � : k. For any t 2 T�(~x)k, we denote by C[t] 2 T�(~x) the term
obtained by replacing � by t.

A �(~x)-equation is a formula t = u with t; u 2 T�(~x)k for some k 2 K. A
�(~x)-membership is a formula t : s with t 2 T�(~x)k and s 2 Sk. �-sentences
are universally quanti�ed Horn clauses of the form (8~x) A if A1 ^ � � � ^ An

where A and Ai (1 � i � n) are either �(~x)-equations or �(~x)-memberships.
If A is a �(~x)-equation, the sentence is a conditional equation; if A is a �(~x)-
membership, the sentence is a conditional membership. A MEL theory is a pair
E = (�;�) with � a MEL signature and � a set of �-sentences. As explained
in [2, 16], there is a sound and complete inference system to derive all theorems
of a MEL theory (�;�).

3 Conditional Equational Rewrite/Membership Systems

Existing techniques for checking su�cient completeness require considering the
rewrite system used to de�ne the equational speci�cation. Our approach like-
wise requires considering the conditional rewrite system that expresses the oper-
ational semantics of a MEL theory when executed in a language such as Maude.

Standard conditional term rewriting systems, also called join term rewriting
systems, interpret equations t = u appearing in a condition as join pairs t #u, in
which t and u are considered equal if they rewrite to the same term. However,
in order to consider a larger class of term rewriting systems, we use oriented
systems, in which conditions may contain formulas of the form t!u. An oriented

4

Equivalence
t =E u

t! u

Replacement
t =E C[l�] u1�! v1� : : : um�! vm� w1� : s1 : : : wn� : sn

t!1
C[r�]

with (8~y) l! r if

m̂

i=1

ui! vi ^
n̂

j=1

wj : sj in � .

Transitivity t!1 u u! v
t! v

Membership
t =E l� u1�! v1� : : : um�! vm� w1� : s1 : : : wn� : sn

t :0 s

with (8~y) l : s0 if
m̂

i=1

ui! vi ^
n̂

j=1

wj : sj in � and s0 < s

Subject Reduction t! u u :0 s
t : s

with t; u; v 2 T�(~x) and � : ~y ! T�(~x)

Fig. 1. Inference rules for R = (�;E;<; �) with respect to �-distinct variables ~x

term rewriting system can simulate a join term rewriting system by introducing
a new kind B, a new constant tt : ! B, and for each k 2 K, a binary operator
eq : k k ! B with a new rule (8x : k) eq(x; x)! tt. Join conditions of the form
t #u can then be expressed as oriented conditions eq(t; u)! tt.

De�nition 1. A conditional equational rewrite/membership (CERM) system
is a tuple R = (�;E;<; �) in which: � = (K;F ;S) is a MEL signature where
T�;k is nonempty for each k 2 K, E is a set of unconditional �-equations;
< = f<kgk2K is a K-indexed family of binary relations such that <k is a strict
order over Sk for each k 2 K; and � is a set containing two types of rules:

(8~y) t : s if
^
ui! vi ^

^
wj : sj (8~y) t! t0 if

^
ui! vi ^

^
wj : sj

Membership Rule Rewrite Rule

with ~y a set of �-distinct variables, t; t0 2T�(~y)k and s 2 Sk with k 2 K, each
ui; vi 2 T�(~y)ki with ki 2 K, and each wj 2 T�(~y)kj and sj 2 Skj with kj 2 K.

In the rest of this section, R = (�;E;<; �) is a CERM system where � =
(K;F ;S) and ~x is a list of �-distinct variables. �(~x)-atomic formulas are ex-
pressions of the form t!u and t : s, where t; u 2 T�(~x)k and s 2 Sk with k 2 K.

When A is a �(~x)-atomic formula, R ` A denotes that A can be derived
from the inferences rules in Fig. 1 for R. We will additionally use the notation
R ` t #u to abbreviate (9v) R ` t! v ^ R ` u! v. This inference system
re�nes and extends the one used in Fig. 7 of [2]. Speci�cally, we de�ne re�ned
notions of rewriting and membership directly in the proof theory, combine several
rules into a single rule to allow simpler proofs later on, and allow rewrites to
take place modulo the axioms E. Note that !1 corresponds to the notion of a

5

one-step rewrite modulo the equations E, and :0 is a more restricted notion of
membership in which we disallow subject reduction.

A term t 2 T�(~x) is R-reducible when there is a u 2 T�(~x) where R ` t!1u

and R-irreducible when it is not R-reducible. R is pattern-based when for each
rule in R of the form (8~y)A if

V
1�i�mui! vi ^

V
1�j�nwj : sj with A of the

form l! r or l : s, we have for each vi 2 fv1; : : : ; vmg:

{ The variables in vi are fresh
1, i.e.

vars(vi) \
�
vars(l) [

[
1�k�i

vars(uk) [
[

1�k<i

vars(vk)
�
= ?

{ Any rewriting of a term vi� occurs below the pattern vi, i.e., for �-distinct
variables ~x and substitution � : ~y ! T�(~x), if there is a term t 2 T� such
that R ` vi�! t, then there is a substitution � : ~y ! T�(~x) where t =E vi� .

R is con
uent relative to variables ~x when for every t; u; v 2 T�(~x), if R ` t!u

and R ` t! v, then R ` u # v. R is sort-decreasing relative to variables ~x when
for every t; u 2 T�(~x) and s 2 S if R ` t!u and R ` t : s, then R ` u : s. In
particular, when R is con
uent (resp. sort-decreasing) relative to ?, the empty
set of variables, we call R ground con
uent (resp. ground sort-decreasing).

De�nition 2. Let R = (�;E;<; �) be a CERM system with � = (K;F ;S).
ER = (�;E [� 0 [M<) denotes the underlying MEL speci�cation of R where
� 0 contains the same axioms as � , but with each oriented atomic formula t!u

replaced with an equality t=u, andM< is a set of conditional memberships which
axiomatize the subsort relation <, i.e.

M<=
�
(8x : k)x : s if x : s0

�� s; s0 2 Sk : s0 < s
	
:

R is weakly-convergent relative to variables ~x when R is pattern-based, con-

uent, and sort-decreasing relative to ~x. R is ground weakly-convergent when
R is weakly-convergent relative ?. There is an equivalence between formulas
provable in a weakly-convergent system R and its underlying speci�cation ER.

Theorem 1 (Inference Equivalence). Let R = (�;E;<; �) be a CERM sys-
tem that is weakly-convergent relative to �-distinct variables ~x. For all t; u 2
T�(~x) and s 2 S,

ER ` t=u () R ` t #u and ER ` t : s () R ` t : s:

The inference system of ER can be found in Fig. 4 of [2]. ut

A model theoretic de�nition of su�cient completeness for MEL speci�cations
was given in [9]. We provide here proof theoretic de�nitions of su�cient com-
pleteness for both CERM systems and their underlying MEL speci�cations, and
show under what conditions these two de�nitions coincide.

1 Without the additional requirement that vars(r) � l [
S
1�k�m vk and each

vars(ui) � l [
S
1�k<i vk, pattern-based systems are not directly executable, un-

less a strategy to instantiate the additional free variables in r and each ui is given.
Nevertheless, our results hold in generality without this extra requirement.

6

De�nition 3. Let R = (�;E;<; �) be a CERM system in which � = R [M ,
where R contains the rewrite rules and M contains the membership rules.

Given a subset of memberships M
 �M , let R
 = (�;E;<;R[M
) be the
associated CERM system. R is su�ciently complete with respect to R
 when for
all t; u 2 T� and s 2 S:

R ` t #u () R
 ` t #u and R ` t : s () R
 ` t : s:

Additionally, ER is su�ciently complete with respect to ER

when for all t; u 2

T� and s 2 S:

ER ` t=u () ER

` t=u and ER ` t : s () ER

` t : s:

Moreover, if ER is su�ciently complete with respect to ER

, M
 are its con-

structor memberships, ER

is a constructor subspeci�cation of ER, and M� =

M� �M
 are its de�ned memberships.

Theorem 2 (Su�. Comp. Equivalence). Let R = (�;E;<;R[M), and let
M
 �M be a subset of memberships in R.

{ If R is ground weakly-convergent and su�ciently complete with respect to
R
, then ER is su�ciently complete with respect to ER

.
{ If R
 is ground weakly-convergent, and ER is su�ciently complete with re-

spect to ER

, then R is su�ciently complete with respect to R
. ut

4 Su�cient Completeness and Propositional Tree
Automata

Techniques for checking su�cient completeness of unconditional speci�cations
typically require that the speci�cation is weakly normalizing, i.e., every term t

rewrites to an irreducible term u. In the context of conditional rewriting, this
condition is not strong enough. We need to develop a stronger notion of weak
normalization in the context of CERM systems. Recall that a reduction order
� on T�(~x) is a strict order that is noetherian, congruent with =E , and closed
with respect to context and substitution.

De�nition 4. Let R = (�;E;<; �), and let ~x be a set of �-distinct variables.
A proof is said to be reductive relative to a reduction order � when every

use of Replacement and Membership inferences:

t=E C[l�]
V
ui�! vi�

V
wj� : s1

t!1
C[r�]

t=E l�
V
ui�! vi�

V
wj� : sj s0<s

t :0 s

satis�es that t � C[r�], t � ui� for each ui, and t � wj� for each wj.
We say that R is weakly normalizing relative to ~x when:

{ For each t 2 T�(~x), there is a R-irreducible u 2 T�(~x) such that R ` t!u

{ There is a reductive order �R where for every �(~x)-sentence A derivable
from R, i.e. R ` A, there is a proof of A that is reductive relative to �R.

R is ground weakly normalizing when it is weakly normalizing with ~x = ?.

7

For a broad class of speci�cations, there is a characterization of su�cient
completeness which is often easier to check.

Theorem 3 (Checking Theorem). Let R = (�;E;<;R [M) be a ground
weakly normalizing and ground sort-decreasing CERM system in which � =
(K;F ;S). Given a set of memberships M
 � M , R is su�ciently complete
with respect to R
 i� for every membership m 2M�,

(8~y) t : s if
^
ui! vi ^

^
wj : sj ;

and every substitution � : ~y ! T� in which R ` ui�! vi� and R ` wj� : sj for
each i and j, if t� is R
-irreducible, then R
 ` t� : s. ut

In Section 5, a particular subclass of speci�cations for which su�cient complete-
ness can be formulated as a tree language problem using a new type of tree
automata, proposed below, which we call propositional tree automata (PTA).

De�nition 5. A propositional tree automaton is a tuple A = (K;F ;Q; �;E;�)
where:

{ (K;F) is a many-kinded signature, i.e., a pair with a set K of kinds and a
K-kinded family F of function symbols;

{ Q = fQkgk2K is a K-kinded family of sets of states with Qk \F�;k0 = ? for
each k; k0 2 K;

{ � = f�kgk2K is a K-indexed family of propositional formulas, where the
atomic propositions in each �k are states in Qk;

{ E is a set of unconditional (K;F)-equations; and

{ � contains rewrite rules, called transition rules, each of which is of one of
the following forms:

(Type 1) f(p1; : : : ; pn)! q (Type 2) p! q

where for some k 2 K, p; q 2 Qk, f 2 F(k1;:::;kn);k, and each pi 2 Qki .

Propositional tree automata extend traditional tree automata [4, 5] in several
di�erent directions: terms are over a many-kinded signature instead of over an
unsorted signature; recognition is done modulo the unconditional equations E;
and a term t 2 T�;k is accepted if the complete set of states t can reach is a
model of �k. They can also be viewed as a special class of CERM systems.

De�nition 6. Let A = (K;F ;Q; �;E;�) be a PTA, and let �A = (K;F[Q;?).
We call RA = (�A; E;?; �) the associated CERM system of A where: (1) the
signature �A contains the operations in F with the states in each Qk added
as constants of kind k, and no sorts; (2) the subsort relation is empty; (3) the
equations E are left unchanged; (4) the rules in A become rewrite rules in RA.

A move relation !A on terms in T�A is the binary relation in which, for
terms t; u 2 T�A , t !A u i� RA ` t!u. Additionally, for each k 2 K, we
de�ne the mapping reachA;k : T�A;k ! P(Qk) as follows:

reachA;k(t) = f q 2 Qk j t!A q g:

The language accepted by A, L(A) = fL(A)kgk2K, is a K-kinded family of

8

subsets of T�A;k in which for each k 2 K:

L(A)k = f t 2 T�A;k j reachA;k(t) j= �k g

where boolean formulas are evaluated using their standard interpretations:

S j= p if p 2 S; S j= �1 _ �2 if S j= �1 or S j= �2; S j= : � if S 6j= �:

As an example, let us consider the PTA A with a single kind k, the proposi-
tional formula �k = qa ^ :qb, and the transition rules:

a! qa b! qb f(qa)! qa f(qb)! qb f(qa)! q f(qb)! q:

Then a is accepted by A, because reachA;k(a) = f qa g and f qa g j= qa ^:qb.
Similarly, f(a) is accepted as reachA;k(f(a)) = f qa; q g and f qa; q g j= qa ^:qb.
However, b is not accepted, because reachA;k(b) = f qb g and f qb g 6j= qa ^:qb.

PTA are closed under boolean operations. Intersecting two automata simply
requires intersecting the propositional formulas in the two automata. Comple-
menting an automaton simply requires complementing the propositional formula
in that automata.

One can observe that, given a term t and a PTA A with a set Q of states,
when t!A q is decidable for each q 2 Q, reach(t) is e�ectively computable, and
consequently the membership problem for PTA is decidable. When the emptiness
problem for PTA is decidable, other typical decision problems, such as inclusion,
universality, and intersection-emptiness are all decidable due to the boolean clo-
sure properties of PTA.

5 PTA-Construction for Su�cient Completeness

De�nition 7. A CERM system R = (�;E;<; �) in which � = (K;F ;S) is
PTA-checkable when it satis�es:

(a) R is ground weakly normalizing and ground weakly-convergent.

(b) For each k; k0 2 K, Sk \ F�;k0 = ?.

(c) Each equation in E is linear.

(d) Every axiom in � is of one of the forms:

(8~y) f(t1; : : : ; tn)! r if
^
yi2~y

yi : si (8~y) f(t1; : : : ; tn) : s if
^
yi2~y

yi : si

where f(t1; : : : ; tn) is linear and vars(f(t1; : : : ; tn)) = ~y.

Every PTA-checkable system satis�es the conditions in Theorem3. Henceforth,
we will often abbreviate a conditional axiom (8~x)A if

V
xi2~x

xi : si in a PTA-
checkable system with the syntax (8~x :~s)A, where ~s = s1; : : : ; sj~xj.

The class of PTA-checkable systems is general enough to include all uncon-
ditional, left-linear, order sorted speci�cations where E is linear. As a simple
example of a PTA-checkable system, we can specify non-empty multisets of nat-
ural numbers in the following Maude functional module:

9

fmod MSET is

sorts Nat MSet . subsort Nat < MSet .

op 0 : -> Nat [ctor]. op s : Nat -> Nat [ctor].

op __ : MSet MSet -> MSet [ctor assoc comm].

op |_| : MSet -> Nat .

var N : Nat var M : MSet .

eq | N | = s(0) . eq | N M | = s(| M |) .

endfm

This module de�nes the sorts Nat and MSet with Nat < MSet. Because of this sub-
sort declaration, Nat and MSet are implicitly in the same kind, denoted [MSet].
The operators 0 and s denote zero and successor respectively. The subsort decla-
ration speci�es that every natural number is also a multiset, and the __ operator
denotes the union of two multisets. These operators are labeled with the ctor

attribute to identify them as constructors, and __ is additionally labeled with the
assoc and comm attributes to introduce associativity and commutativity axioms
for it, i.e., (xy)z = x(yz) and xy = yx. A single de�ned operation is introduced
|_| which returns the number of elements in a multiset. The variable declara-
tions associate the variable N with the the sort Nat, and the variable M with the
sort MSet. By this, M and N are declared to have kind [MSet], and when either
variable appears in a rule, an implicit condition is added to the rule that the
variable only ranges over terms with the associated sort. The other equations,
| N | = s(0) and | N M | = s(| M |), are interpreted as rewrite rules. In
the CERM system corresponding to MSET, E only contains the associativity and
commutativity axioms of __. � contains the memberships and other equations.

The speci�cation contains membership rules as well, but these are implicit
in the operator declaration section. In fact, the previous operation and equation
declarations are just syntactic sugar for:

op 0 : -> [MSet] . op s : [MSet] -> [MSet] .

op __ : [MSet] [MSet] -> [MSet] [assoc comm].

op |_| : [MSet] -> [MSet] .

mb 0 : Nat . cmb s(X) : Nat if X : Nat .

cmb X Y : MSet if X : MSet /\ Y : MSet .

cmb | X | : Nat if X : MSet .

ceq | N | = s(0) if N : Nat .

ceq | N M | = s(| M |) if N : Nat /\ M : MSet .

We can check the su�cient completeness of a PTA-checkable system by test-
ing the emptiness of a propositional tree automaton. To do this, given a PTA-
checkable CERM system R annotated with a constructor subsystem R
 , we
construct an automata with states such that a term t will rewrite to a speci�c
state: (1) when t is reducible; (2) when t is a constructor with sort s 2 S; and
(3) when t matches a de�ned membership with sort s 2 S and has constructor
subterms.

De�nition 8. Let R = (�;E;<; �) be an PTA-checkable system in which � =
(K;F ;S) and � = R [M , where R contains the rewrite rules and M contains
the membership rules. Let T�(S) denote the set of terms obtained by adding for
each k 2 K and sort s 2 Sk, a distinct constant of kind k to �. Given terms

10

t 2 T�;k and u 2 T�(S)k with k 2 K, we say that u subsumes t, R ` u� t, when
u� t is derivable from the rules:

R ` t : s

R ` s� t

R ` u1� t1 : : : R ` un� tn

R ` f(u1; : : : ; un)� f(t1; : : : ; tn)

Given �-distinct variables ~x = x1 : k1; : : : ; xn : kn and sorts ~s = s1; : : : ; sn
with si 2 Ski for each si 2 ~s, the variable sort mapping, s~x:~s : T�(~x)! T�(S),
returns terms in which each variable xi is replaced by si, i.e., s~x:~s(f(t1; : : : ; tn)) =
f(s~x:~s(t1); : : : ; s~x:~s(tn)) and s~x:~s(xi) = si.

The intermediate terms of R, IR � T�(S), are the terms obtained by applying
the s~x:~s to the strict subterms of the left-hand side lhs of each rule in � :

IR =
�
s~x:~s(t)

�� (8~x :~s)A 2 � ^ (9 C 6= �) lhs(A) = C[t]
	

Given a choice of potential constructor memberships M
 �M , the su�cient
completeness automaton for R and M
 is the automaton:

AR=M

=
�
K;F ;

�
Q

k

	
k2K

;
�
�
k
	
k2K

; E;�

�

in which for each k 2 K, the components Q

k , �

k , and �
 are de�ned by:

Q

k = fqk; rkg [fqs : s 2 Skg [fds : s 2 Skg [fqt j t 2 IRg

�
k = :rk ^
W
s2Sk

(ds ^ :qs)

�
 =
�
f(qk1 ; : : : ; qkn)! qk

�� f 2 �k1:::kn;k

	

[
�
qs ! qs0

�� s < s0
	

[
�
f(qs~x:~s(t1); : : : ; qs~x:~s(tn))! qs

�� (8~x :~s) f(t1; : : : ; tn) : s 2M

	

[
�
f(qs~x:~s(t1); : : : ; qs~x:~s(tn))! ds

�� (8~x :~s) f(t1; : : : ; tn) : s 2M�

	

[
�
f(qs~x:~s(t1); : : : ; qs~x:~s(tn))! qs~x:~s(f(t1;:::;tn))

�� (8~x :~s) f(t1; : : : ; tn) 2 IR
	

[
�
f(qs~x:~s(t1); : : : ; qs~x:~s(tn))! rk

�� (8~x :~s)f(t1; : : : ; tn)!u2R^ f2F~k;k
	

[
�
f(qk1 : : : ; qki�1 ; rki ; qki+1 ; : : : ; qkn)! rk

�� f 2 Fk1;:::;kn;k ^ 1�i�n
	

The following theorem assures the correctness of the previous de�nition.

Theorem 4 (SCA Theorem). Let R = (�;E;<;R [M
 [M�) be a PTA-
checkable CERM system, and let R
 = (�;E;<;R [M
). R is su�ciently
complete with respect to R
 i� L(AR=M

) = ?. ut

As an example, the su�cient completeness automaton for the MSET speci�-
cation can be de�ned as AMSET = (K;F ;Q; �;E;�) in which:

{ K is the single kind [MSet].

{ F contains 0, s, __, and |_|.

{ Q = fq[MSet]; r[MSet]; qNat; qMSet; dNat; dMSet; qNMg.

{ � = :r[MSet] ^ ((dNat ^:qNat) _ (dMSet ^:qMSet)).

{ E contains the associativity and commutativity axioms for __.

{ � contains the following rules:

11

0! q[MSet] s(q[MSet])! q[MSet] (1)

q[MSet] q[MSet] ! q[MSet]
��q[MSet]

��! q[MSet] (2)

0! qNat s(qNat)! qNat (3)

qMSet qMSet ! qMSet qNat ! qMSet (4)

jqMSetj ! dNat qNat qMSet ! qNM (5)

jqNatj ! r[MSet] jqNMj ! r[MSet] (6)

s(r[MSet])! r[MSet] q[MSet] r[MSet] ! r[MSet] (7)

r[MSet] q[MSet] ! r[MSet]
��r[MSet]

��! r[MSet]: (8)

Due to (1) and (2), for every term t, we have t! q[MSet]. Due to (3) for every
natural number n, we have t! qNat. Due to (4) for every multiset m, we have
m! qMSet. Due to the �rst rule on (5). jmj ! dNat for each multiset m, and due
to the second on (5), we have nm! qNM for each natural number n and multiset
m. Due to (6). terms matching equations are rewritten to r[MSet], and �nally due
to (7) and (8), the set of terms rewritable to r[Mset] is closed under context.

6 Flattened Automata for Emptiness Testing

In some sense, PTA are an inherently complete and deterministic type of tree au-
tomata. This is due to the acceptance criteria of an automaton being determined
by the complete set of states reachable from a term. Our approach to solving
the emptiness problem for PTA relies on converting a PTA into an equivalent
complete and deterministic automaton with a conventional notion of acceptance.

This technique only can be used for PTA with particular classes of equations
E. Thus in the remainder of this paper, we focus on the cases where E = ?, and
the case where E contains the axioms of associativity and commutativity (AC)
for some of the binary function symbols f 2 F , that is,

f(f(x; y); z) = f(x; f(y; z)) and f(x; y) = f(y; x):

Each symbol in F must be either free or both associative and commutative.
In the free case (E = ?), a PTA can be encoded into a regular tree automaton

that accepts an equivalent language. Given a PTA A = (K;F ;Q; �;?; �), we
de�ne a many-kinded TA Ad = ((K;F);Qd;Qd

f
; �d) in which: Qd contains each

set of state symbols in Q, i.e. Qd = fP(Qk) gk2K; Q
d
f
consists of subsets of Q

which model the appropriate formula in �, i.e. Qd
f
= fPd

k gk2K where Pd
k =

fP � Qk j P j= �kg; and �nally:

�d = f f(P1; : : : ; Pn)! reach(f; P1; : : : ; Pn) j f 2 F~k;k ^ (8i)Pi � Qkig

where reach(f; P1; : : : ; Pn)=f q 2Qk j (9p12P1; : : : ; pn2Pn) f(p1; : : : ; pn)!A q g.
The case of PTA with AC axioms is more complex, since a deterministic reg-

ular tree automaton may not still be deterministic when AC axioms are added
to its signature. This problem is often resolved for AC symbols by introducing
a
attened tree structure where the binary AC symbols are replaced by variadic
symbols which take a variable number of arguments, and terms are
attened so

12

that no immediate subterm has the same variadic symbol. These tree automata
are closely related to tree automata with arithmetical constraints such as multi-
tree automata [14] or Presburger tree automata [21], and the emptiness problem
for the class of these automata is known to be decidable [15]. Our de�nition
below uses semi-linear sets as described in [6].

De�nition 9. A
attened tree automaton (f-TA) is a tuple A = (�;Q;Qf ; �)
where:

{ � = (K;F ;FAC) where (K;F) is a many-kinded signature and FAC is a
K-kinded family of variadic AC symbols disjoint from the symbols in F .

{ Q = fQk gk2K is a K-kinded family of sets of states.

{ Qf = fPk gk2K is a K-kinded family of sets of �nal states with each Pk � Qk.

{ � is a set of transition rules, each of which is of one of the following forms:

f(p1; : : : ; pn)! q p! q f(X)! q if #(X) 2 S

where the �rst two rules follow the restrictions on (Type 1) and (Type 2)
rules, and in the third rule f 2 FACk, X is a variable matching any list of
states in Q�k, and S � N

Qk is a semi-linear set. The function # : Q�k ! NQk ,
called the Parikh mapping [6] maps a list of states to a vector representing
the number of occurrences of each state in the list.

The language accepted by the f-TA A, L(A) = fL(A)k gk2K, is de�ned as usual:

L(A)k = f t 2 T�;k j (9q 2 Pk) t!A qg

To de�ne a notation of equivalence between a signature with AC symbols
and
attened languages, we de�ne the mapping
at : T(K;F) ! T(K;F[FAC) by
the equations
at(g(t1; : : : ; tn)) = g(
at(t1); : : : ;
at(tn)) if g is a free symbol,
and
at(C[t1; : : : ; tn]) = f(
at(t1); : : : ;
at(tn)) when C is a maximal context
involving only occurrences of an AC-symbol f . For each AC-PTA A, there is a

attened f-TA Adet accepting an equivalent language which can be constructed.

De�nition 10. Let A = (K;F ;Q; �;E;�) be a AC-PTA. For each AC symbol
f 2 Fkk;k and state q 2 Qk, let Gfq = (Qk;P(Qk); q; �) be the context free
grammar in which Qk is the set of non-terminal symbols, P(Qk) is the set of
terminal symbols, q is the initial symbol, and � contains the rules:

� = fq! p1p2 j f(p1; p2)! q 2�g [fq!P j P �Q ^ q 2Pg :

From a theorem of Parikh [20], we know there is a semilinear set equal to the
commutative closure of a context free language. Accordingly we will use Sfq �
NP(Q) to denote the the commutative closure of the language L(Gfq).

Let Adet= (�;FAC;Q
d;Qd

f
; �d) in which: � = (K;Fd;FAC) where the Fd

contains the free symbols and FAC the AC symbols of F ; as in the free case,
Qd = fP(Qk) gk2K and Qd

f
= fP d

k gk2K with P d
k = fP � Qk j P j= �kg; and

�nally �d = �1 [�2:

�1 = f f(P1; : : : ; Pn)! reach(f; P1; : : : ; Pn) j f 2 F~k;k ^ (8i)Pi � Qkig

�2 = f f(X)!P if](X)2
�\
q2A

Sfq \
\

q2QnA

(Sfq)
c
\S>2

�
j f 2FACk ^P �Qkg

13

Theorem 5 (Flattening Theorem). Let A be a AC-PTA. For each t 2 T�,

t 2 L(A) ()
at(t) 2 L(Adet):

It can be easily shown that emptiness of f-TA is decidable, and consequentially
that su�cient completeness of AC-PTA checkable system is decidable.

7 Conclusions

We have presented three contributions advancing methods for proving su�cient
completeness to handle conditional speci�cations involving partial functions and
where deduction is performed modulo axioms. Speci�cally, we have studied the
su�cient completeness of such speci�cations and their associated rewriting sys-
tems in greater generality than it had been done up to now, have introduced a
new kind of equational tree automata (PTA), and have identi�ed a subclass of
speci�cations whose su�cient completeness problem is equivalent to the empti-
ness problem for their associated PTA. Furthermore, we have shown that the
emptiness problem is decidable for AC-PTA, thus making the su�cient com-
pleteness of AC-PTA-checkable speci�cations decidable.

A number of further extensions of this work seem worth investigating. First,
the results for AC-PTA should be extended to allow symbols with di�erent com-
binations of associativity, commutativity, and identity axioms. Such axioms are
used quite frequently and supported by languages such as Maude. This would al-
low us to decide su�cient completeness for a much wider class of PTA-checkable
speci�cations. A problematic case would be speci�cations with symbols that are
associative but not commutative, because of well-known undecidability results
for the corresponding equational tree automata [19]. However, decidability seems
unproblematic in all other cases. A second important topic is the generation of
counterexamples to show lack of su�cient completeness: ground term counterex-
amples are practical and easy to generate, but investigating ways of symbolically
describing sets of counterexamples may be quite useful for other purposes, such
as generating induction schemes for theorem provers. A third topic worth in-
vestigating is what we called the \second prong" in the introduction, namely,
integrating su�cient completeness checking and inductive theorem proving in
order to handle speci�cations outside the decidable subclasses. Further advances
in these three areas should provide both foundations and algorithms in which to
build a next-generation PTA-based su�cient completeness tool forMEL speci�ca-
tions modulo axioms. This would make su�cient completeness checking available
for a very wide class of speci�cations in Maude and other equational languages
for speci�cation and programming with advanced features.

References

1. A.Bouhoula and M.Rusinowitch: SPIKE: A System for Automatic Inductive
Proofs, Proc. of 4th AMAST, Montreal (Canada), LNCS 936, pp. 576{577, 1995.

2. A.Bouhoula, J.P. Jouannaud and J.Meseguer: Speci�cation and Proof in Member-
ship Equational Logic, TCS 236, pp. 35{132, 2000.

14

3. M.Clavel, F.Dur�an, S. Eker, P. Lincoln, N.Mart��-Oliet, J.Meseguer and J.F.Que-
sada:Maude Speci�cation and Programming in Rewriting Logic, TCS 285, pp. 187{
243, 2002.

4. H.Comon, M.Dauchet, R.Gilleron, F. Jacquemard, D. Lugiez, S. Tison and M.
Tommasi: Tree Automata Techniques and Applications (TATA), draft, 2002. Avail-
able at URL: http://www.grappa.univ-lille3.fr/tata

5. F.G�ecseg and M. Steinby: Tree Languages, Handbook of Formal Languages 3,
pp. 1{68 (Chap. 1), Springer-Verlag, 1996.

6. S.Ginsburg: The Mathematical Theory of Context-Free Languages, McGraw-Hill,
1966.

7. J.V.Guttag: The Speci�cation and Application to Programming of Abstract Data
Types, Ph.D. thesis, Computer Science Department, University of Toronto, 1975.

8. J.V.Guttag and J.J.Horning: The Algebraic Speci�cation of Abstract Data Types,
Acta Inf. 10, pp. 27{52, 1978.

9. J. Hendrix, M.Clavel and J.Meseguer: A Su�cient Completeness Reasoning Tool
for Partial Speci�cations, Proc. of 16th RTA, Nara (Japan), LNCS 3467, pp. 165{
174, 2005.

10. J.P. Jouannaud and E.Kounalis: Automatic Proofs by Induction in Equational The-
ories without Constructors, Inf. Comput. 81(1), pp. 1{33, 1989.

11. D.Kapur: An Automated Tool for Analyzing Completeness of Equational Speci�-
cations, Proc. of ISSTA'94, Seattle (USA), pp. 28{43, ACM Press, 1994.

12. D.Kapur, P.Narendran and H. Zhang: On Su�cient-Completeness and Related
Properties of Term Rewriting Systems, Acta Inf. 24, pp. 395{415, 1987

13. D.Kapur, P.Narendran, D.J.Rozenkrantz and H. Zhang: Su�cient-Completeness,
Ground-Reducibility and Their Complexity, Acta Inf. 28, pp. 311{350, 1991.

14. D. Lugiez and S.Dal Zilio: XML Schema, Tree Logic and Sheaves Automata, Proc.
of 14th RTA, Valencia (Spain), LNCS 2706, pp. 246{263, 2003.

15. D. Lugiez, S.Dal Zilio and C.Meyssonnier: A Logic You can Count on, Proc. of
31st POPL, Venice (Italy), pp. 135{146, ACM Press, 2004.

16. J.Meseguer: Membership Algebra as a Logical Framework for Equational Speci�ca-
tion, Proc. of WADT'97, Tarquinia (Italy), LNCS 1376, pp. 18{61, 1997.

17. T.Nipkow and G.Weikum: A Decidability Result about Su�cient Completeness of
Axiomatically Speci�ed Abstract Data Types, Proc. of 6th GI Conference, Dort-
mund (Germany), LNCS 145, pp. 257{268, 1983,

18. H.Ohsaki: Beyond Regularity: Equational Tree Automata for Associative and Com-
mutative Theories, Proc. of 15th CSL, Paris (France), LNCS 2142, pp. 539{553,
2001.

19. H.Ohsaki and T.Takai: Decidability and Closure Properties of Equational Tree
Languages, Proc. of 13th RTA, Copenhagen (Denmark), LNCS 2378, pp. 114{128,
2002.

20. R.J. Parikh: On Context-Free Languages, JACM 13(4), pp. 570{581, 1966.
21. H. Seidl, T. Schwentick and A.Muscholl: Numerical Document Queries, Proc. of

22nd PODS, San Diego (USA), pp. 155{166, ACM Press, 2003.
22. K.N.Verma: Two-Way Equational Tree Automata for AC-Like Theories: Decid-

ability and Closure Properties, Proc. of 14th RTA, Valencia (Spain), LNCS 2706,
pp. 165{179, 2003.

A Appendix: Proofs

This section contains proofs of each theorem stated in the previous sections. The
�rst theorem proved will be the Equivalence Theorem (Theorem 1), but �rst we
introduce the following lemmas:

15

Lemma 1 (General Transitivity). R ` t!u and R ` u! v imply R `
t! v.

Proof. Use structural induction on a proof tree of R ` t!u. ut

Corollary 1 (General Subject Reduction). R ` t!u and R ` u : s imply
R ` t : s.

Proof. There must be a v such that R ` u! v and R ` v :0 s. R ` t! v by
General Transitivity, and R ` t : s by Subject Reduction ut

Lemma 2 (Subsort Lemma). R ` t : s and s < s0 imply R ` t : s0.

Proof. There must be a v such that R ` t! v and R ` v :0 s. Any proof of
R ` v :0 s is also a proof R ` v :0 s0, and thus R ` t : s0.

Lemma 3 (Context Lemma). R ` t!u implies R ` C[t]!C[u] for any
context C.

Proof. Use structural induction on a proof tree of R ` t!u. ut

Corollary 2 (General Congruence). R ` t1!u1; : : : ;R ` tn!un implies
R ` f(t1; : : : ; tn)! f(u1; : : : ; un).

Proof. Induct on the number of distinct positions j such that ti 6= ui. If j = 0,
use Equivalence. Otherwise, assume that the conjecture holds for j positions and
that there are j+1 distinct positions such that ti 6= ui. If we �x i to a particular
position where ti 6= ui, by induction we have

R ` f(t1; : : : ; tn)! f(u1; : : : ; ui�1; ti; ui+1; : : : ; un):

By the conditions of the theorem and the context lemma, we have

R ` f(u1; : : : ; ui�1; ti; ui+1; : : : ; un)! f(u1; : : : ; un):

We are done by General Transitivity. ut

Corollary 3 (Substitution Congruence). Let ~x and ~y be �-distinct vari-
ables, let t 2 T�(~x), and let �; � : ~x! T�(~y) be substitutions. If R ` �(x)! �(x)
for each x 2 ~x, then R ` t�! t� .

Proof. Use structural induction on t. If t is a variable x 2 ~x, then by assumption,
R ` �(x)! �(x). Otherwise, t is of the form f(t1; : : : ; tn) and by our induction
hypothesis R ` ti�! ti� for each i 2 f1; : : : ; ng. By General Congruence, R `
t�! t� . ut

In a way similar to our de�nition of pattern-based CERM systems, we de�ne
what it means for a conjunction of atomic formulas to be pattern based. Specif-
ically a conjunction of atomic formulas, u1! v1 ^ � � � ^ un! vn, is pattern based
when for each vi:

{ The variables in vi are fresh
2, i.e.

vars(vi) \
�
vars(l) [

[
1�k�i

vars(uk) [
[

1�k<i

vars(vk)
�
= ?

16

{ Any rewriting of a term vi� occurs below the pattern vi, i.e., for �-distinct
variables ~x and substitution � : ~y ! T�(~x), if there is a term t 2 T� such
that R ` vi�! t, then there is a substitution � : ~y ! T�(~x) where t =E vi� .

Lemma 4. Let R be a CERM that is con
uent relative to variables ~x. Given a
pattern-based conjunction of atomic formulas t1!u1 ^ � � � ^ tn!un containing
variables ~y, if � : ~y ! T�(~x) is a substitution such that R ` ti� #ui� for each
i 2 f1; : : : ;mg, then there is a substitution � : ~y ! T�(~x) such that:

R ` �(y)! �(y) for each y 2 ~y

R ` ti�!ui� for each i 2 f1; : : : ;mg

Proof. For a substitution �, let k� be the smallest index i such that R 6`
ti�!ui�. If no such index exists, then let k� = n + 1. We prove this theo-
rem by an induction scheme in which we assume the theorem holds for every
substitution � where k� > k� .

If k� = n + 1, then observe that � = � satis�es the required properties, and
we are done. Otherwise, let k� = i with i � n. By the con
uence of R and the
condition that the conjunction is pattern-based, we know there exists a substi-
tution � such that R ` ti�!ui� and R ` ui�!ui�. Let � be the substitution:

�(y) = �(y) if y 2 vars(ui)

�(y) = �(y) otherwise

Observe that tj� = tj� for j � i, uj� = uj� for j < i, and ui� = ui� . Collec-
tively this implies that R ` t1�!u1� ; : : : ;R ` ti�!ui� . Thus, k� > i and by
induction we are done. ut

Finally, we are ready to prove Theorem 1.

Theorem (Inference Equivalence). Let R = (�;E;<; �) be a CERM system
that is weakly-convergent relative to �-distinct variables ~x. For all t; u 2 T�(~x)
and s 2 S,

ER ` t=u () R ` t #u and ER ` t : s () R ` t : s:

The inference system of ER can be found in Fig. 4 of [2].

Proof. As a typographical convention we will use Bold for rules in Fig. 4 of [2]
and Sans Serif for rules in Fig. 1. The (direction can be easily shown by
structural induction on proof formed from the rules in Fig. 1. The) direction
can be shown by structural induction on proofs formed from the rules in Fig. 4
of [2]. We next split into di�erent cases depending on which inference rule is
used at the top of the proof tree.

Subject Reduction:
t=u u : s

t : s

By induction, R ` u : s and there must be a v 2 T�(~x) such that R ` t! v

and R ` u! v. As R is sort-decreasing, R ` v : s, and thus R ` t : s.

17

Membership:

u1�= v1� : : : um�= vm� w1� : s1 : : : wn� : sn
t� : s

If the membership used is in M<, then it is of the form (8x : k)x : s if x : s0

with s; s0 2 Sk and s0 < s. By induction, R ` t� : s0, and therefore R ` t� : s.
Otherwise, by induction R ` ui� # vi� for i 2 f1; : : : ;mg, and R ` wj� : sj for
j 2 f1; : : : ; ng. There must exist a membership in � with the form:

(8~y) t : s if
m̂

i=1

ui! vi ^
n̂

j=1

wj : sj

As R is pattern-based, by Lemma 4, there is a substitution � : ~y ! T�(~x) such
that R ` �(y)! �(y) for each y 2 ~y, and R ` ui�! vi� for each i 2 f1; : : : ;mg.
By Corollary 3, R ` wj�!wj� for j 2 f1; : : : ; ng. As R is sort-decreasing,
R ` wj�! sj for j 2 f1; : : : ; ng We then have R ` t� : s. R ` t�! t� by
Corollary 3, and therefore R ` t� : s.

Re
exivity:
t= t

Clearly R ` t! t.

Symmetry: t=u

u= t
By induction we have R ` t #u, which is commutative, and thus R ` u # t.

Transitivity: t=u u= v

t= v
R ` t #u and R ` u # v by induction. Using con
uence, we can construct the
diagram:

t

��
44

44
u

��		
		

��
44

44
v

��

w

��
55

55
x

��

y

Congruence:

t1=u1 : : : tn=un

f(t1; : : : ; tn)= f(u1; : : : ; un)

By induction, for each i 2 f1; : : : ; ng, there is a term vi 2 T�(~x) such
that R ` ti! vi and R ` ui! vi. Thus by General congruence, R `
f(t1; : : : ; tn) # f(u1; : : : ; un).

Replacement:

u1�= v1� : : : um�= vm� w1� : s1 : : : wn� : sn
t�= t0�

If the equation used is in E, we are done by Equivalence. Otherwise using an

18

inductive argument identical to that of the Membership rule, we can show
there must exist a substitution � such that R ` t�! t� , R ` t0�! t0� , and
R ` t�! t0� , and we are done. ut

We next prove Theorem 2.

Theorem (Su�. Comp. Equivalence). Let R = (�;E;<;R [M), and let
M
 �M be a subset of memberships in R.

{ If R is ground weakly-convergent and su�ciently complete with respect to
R
, then ER is su�ciently complete with respect to ER

.
{ If R
 is ground weakly-convergent, and ER is su�ciently complete with re-

spect to ER

, then R is su�ciently complete with respect to R
. ut

Proof. Recalling De�nition 3,R is su�ciently complete with respect toR
 when
for every t; u 2 T� and s 2 S:

R ` t #u () R
 ` t #u and R ` t : s () R
 ` t : s (9)

Additionally, ER is su�ciently complete with respect to ER

when for every

t; u 2 T� and s 2 S:

ER ` t=u () ER

` t=u and ER ` t : s () ER

` t : s (10)

Observe that in both (9) and (10), the (direction is trivial, and so we only
need to prove the) direction. To prove the �rst part of the theorem, note:

ER ` t=u () R ` t #u () R
 ` t #u) ER

` t=u

ER ` t : s () R ` t : s () R
 ` t : s) ER

` t : s

To prove the second part, note:

R ` t #u) ER ` t=u () ER

` t=u () R
 ` t #u

R ` t : s) ER ` t : s () ER

` t : s () R
 ` t : s

ut

To prove the Checking Theorem (Theorem 3), we �rst de�ne the noetherian
relation � over �(~x)-sentences.

De�nition 11. Let R = (�;E;<; �) be a CERM system that is weakly normal-
izing relative to �-distinct variables ~x, and let �R be the reductive order used
to show R is weakly normalizing. The noetherian strict � over �(~x)-sentences
can be de�ned as follows:

t!u� v!w if t �R v, or t =E v and u �R w

t!u� v : s0 if t �R v

t : s� v!w if t �R v, or t =E v and t �R w

t : s� v : s0 if t �R v

with t; u; v; w 2 T�(~x) and s; s0 2 S

We also prove the following lemma:

19

Lemma 5. Let R be a CERM that is weakly normalizing relative to �-distinct
variables ~x, and let �R be the reductive order used to show R is weakly normal-
izing. If R ` t!u with t; u 2 T�(~x), then t �R u i� t 6=E u.

Proof. By induction on proof trees that are reductive with respect to �R using
the noetherian order �, the order of �(~x)-sentences formed from �R.

Finally, we can prove the Checking Theorem

Theorem (Checking Theorem). Let R = (�;E;<;R [M) be a ground
weakly normalizing and ground sort-decreasing CERM system in which � =
(K;F ;S). Given a set of memberships M
 � M , let R
 = (�;E;<;R [M
).
R is su�ciently complete with respect to R
 i� for every membership

(8~y) t : s if
m̂

i=1

ui! vi ^
n̂

j=1

wj : sj (11)

in M�, and every substitution � : ~y ! T�, if t� is R
-irreducible, R
 `
ui�! vi� for every i 2 f1; : : : ;mg, and R
 ` wj� : sj for every j 2 f1; : : : ; ng,
then R
 ` t� : s.

Proof. For every membership of form (11) and substitution � : ~y ! T� satisfy-
ing the above requirements, R ` t� : s. If R is su�ciently complete with respect
to R
 , then clearly R
 ` t� : s. To prove the theorem in the other direction, we
show that for every t; u 2 T� and s 2 S:

R ` t!u) R
 ` t!u R ` t : s) R
 ` t : s (12)

If this is true, then R is su�ciently complete with respect to R
 . As R is weakly
normalizing, for every atomic formula A such that R ` A, A can be proved with
a proof that is reductive with respect to �R. Let � is the order of atomic for-
mulas formed from �R. We prove (12) by induction over � on R-proofs that
are reductive with respect to �R If the top of the proof is an Equivalence rule:

t =E u

t! u

clearly R
 ` t ! u. If the top of the proof tree is a Transitivity rule, the left
antecedent must be a Rewrite rule:

t =E C[l�]
Vm
i=1ui�! vi�

Vn
j=1wj� : sj

t!1 C[r�] C[r�]! t0

t! t0

As the proof is in reductive relative to �R, we have t! t0 � C[r�]! t0, t! t0 �
ui�! vi� for each i 2 f1; : : : ;mg, t! t0 � wj� : sj for each j 2 f1; : : : ; ng. Thus,
by induction they are provable in R
 , and R
 ` t! t0. If the top of the proof
is a Subject Reduction rule, the right antecedent must be a Membership rule:

t! u

u =E l�
Vm
i=1ui�! vi�

Vn
j=1wj� : sj

u :0 s
t : s

If t �R u, by our induction hypothesis, R
 ` t!u and R
 ` u : s. By Gen-
eral Subject Reduction, we are done. Otherwise, by Lemma 5, t =E u. By

20

induction, R
 ` ui�! vi� for each i 2 f1; : : : ;mg, and R
 ` wj� : sj for
each j 2 f1; : : : ; ng. If the membership used to prove R ` u :0 s is in M
 ,
R
 ` u :0 s and consequentially R
 ` t : s. Otherwise, the membership used to
prove R ` u :0 s is in M�. If t is R-irreducible, then u must be R
-irreducible.
Then by the induction hypothesisR
 ` u : s and consequentiallyR
 ` t : s. If t is
R-reducible, then as R is ground weakly normalizing and ground sort-decreasing
of R, there is an irreducible t0 2 T� such that R ` t! t0 and R ` t0 : s. As t is R-
reducible, t0 is R-irreducible, t 6=E t0. By Lemma 5, t �R t0. Thus, t : s� t! t0

and t : s� t0 : s. By our induction hypothesis, R
 ` t! t0 and R
 ` t0 : s. Thus
by General Subject Reduction, R
 ` t : s. ut

The next theorem to prove is the correctness proof of the construction of
the su�cient completeness PTA for a PTA-checkable system. Given a PTA A =
(K;F ;Q; �;E;�), let A? = (K;F ;Q; �;?; �) be the PTA in which the equa-
tions E in A have been removed. The following lemma was proved in [18]. It has
been generalized for propositional tree automata.

Lemma 6. Let A = (K;F ;Q; �;E;�) be a PTA. For every t inT(K;F) and
q 2 Q:

t!A u () (9t0 2 T(K;F)) t =E t0 ^ t0 !A? u
ut

Lemma 7. Let R = (�;E;<;R [M) be a PTA-checkable CERM system in
which � = (K;F ;S), let M
 � M , and let RM

= (�;E;<;M
). For every
t 2 T�, s 2 S, and u 2 IR:

t!A?
R=M

qs () R?M

` t : s and t!A?

R=M

qu () R?M

` u� t

Proof. By structural induction on t. ut

Corollary 4. Let R = (�;E;<;R [M) be a PTA-checkable CERM system in
which � = (K;F ;S), let M
 �M , and let R
 = (�;E;<;R [M
). For every
t 2 T�, k 2 K:

t!A?
R=M

rk () t is R?
-reducible

Proof. By simultaneous structural induction on t and C, we can show that for
every k 2 K and t 2 T� , t!A?

R=M

rk when there is a context C 2 T�(� : k0)k,

a rule (8~y :~s) l! r 2 R with l 2 T�;k0 , and a substitution � : ~y ! T� such that
t = C[l�] and �(yi)!A?

R=M

qsi for each yi 2 ~y,

Let RM

= (�;E;<;M
). By Lemma 7, we know that �(yi)!A?

R=M

qsi

i� R?M

` �(yi) : si for each yi 2 ~y. Thus, we can show that C[l�]!A?

R=M

rk i�

R?
 ` C[l�]!1C[r�], and consequently, t is R?-reducible. ut

Corollary 5. Let R = (�;E;<;R [M) be a PTA-checkable CERM system in
which � = (K;F ;S), let M
 � M , and let RM

= (�;E;<;M
). For every

21

t 2 T�, s 2 S:

t!A?
R=M

ds () (9 (8~x :~s) l : s 2M�) R
?

M

` s~x:~s(l)� t

Proof. By de�nition of AR=M

and Lemma 7.

Lemma 8. Let R = (�;E;<;M) be a PTA-checkable CERM system in which
� = (K;F ;S) and M is a set only containing conditional memberships. For
every t 2 T� and s 2 S:

R ` t : s () (9t0 2 T�) t =E t0 ^R? ` t0 : s

Proof. The (direction is trivial. The) direction can be proved by structural
induction on the proof used to show R ` t : s.

Corollary 6. Let R = (�;E;<;M) be a PTA-checkable CERM system in which
� = (K;F ;S) and M is a set only containing conditional memberships. For
every t 2 T� and u 2 T�(S):

R ` u� t () (9t0 2 T�) t =E t0 ^R? ` u� t0

Proof. By induction on u and Lemma 8. ut

Corollary 7. Let R = (�;E;<; �) be a PTA-checkable CERM system. For ev-
ery t 2 T�:

t is R-reducible () (9t0 2 T�) t =E t0 ^ t is R?-reducible

Proof. By considering the de�nition of !1 and Lemma 8.

Lemma 9. Let R = (�;E;<;R[M
 [M�) be a PTA-checkable CERM system
in which � = (K;F ;S), and let RM

= (�;E;<;M
). For each k 2 K, t 2
T�;k, s 2 Sk, and u 2 IR:

t!AR=M

qk (13)

t!AR=M

qs () RM

` t : s (14)

t!AR=M

qu () RM

` u� t (15)

t!AR=M

rk () t is R
-reducible (16)

t!AR=M

ds () (9 (8~x :~s) l : s 2M�)RM

` s~x:~s(l)� t (17)

Proof. Equation (13) can be proved by structural induction on t.
To prove (14) - (17), note:

t!AR=M

qs () (9t0 2 T�(Q)) t =E t0 ^ t0 !A?

R=M

qs by Lemma 6

() (9t0 2 T�(Q)) t =E t0 ^R?M

` t0 : s by Lemma 7

() RM

` t : s by Lemma 8

22

t!AR=M

qu () (9t0 2 T�) t =E t0 ^ t0 !A?

R=M

qu by Lemma 6

() (9t0 2 T�) t =E t0 ^R?M

` u� t0 by Lemma 7

() RM

` u� t by Corollary 6

t!AR=M

rk () (9t0 2 T�) t =E t0 ^ t0 !A?

R=M

rk by Lemma 6

() (9t0 2 T�) t =E t0 ^ t0 is R?
-reducible by Corollary 4

() t is R
-reducible by Corollary 7

t!AR=M

ds () (9t0 2 T�) t =E t0 ^ t0 !A?

R=M

ds by Lemma 6

() (9t0 2 T�) t =E t0 ^

(9 (8~x :~s) l : s 2M�) R
?

M

` s~x:~s(l)� t0 by Corollary 5

() (9 (8~x :~s) l : s 2M�) RM

` s~x:~s(l)� t by Corollary 6

ut

Theorem (SCA Theorem). Let R = (�;E;<;R [M
 [M�) be a PTA-
checkable CERM system, and let R
 = (�;E;<;R [M
). R is su�ciently
complete with respect to R
 i� L(AR=M

) = ?. Let R = (�;E;<;R[M
[M�)
be a

Proof. IfR is su�ciently complete to R
 , using the characterization of su�cient
completeness in Theorem 3, for each term t 2 T�;k and s 2 Sk if there exists
a membership (8~x :~s) u : s in M� such that s~x:~s(u) � t, then either t is R
-
reducible or R
 ` t :0 s. Therefore, by using the characterization of AR=M

from Lemma 9, for each such t 2 T�;k and s 2 Sk, if t !AR=M

ds then then

either t!AR=M

rk or t!AR=M

qs. Clearly then, there is no t 2 L(AR=M

).

If L(AR=M

) = ?, then we know for every t 2 T�;k, either t!AR=M

rk, or
for every s 2 Sk, if t!AR=M

ds, then t!AR=M

qs. Using the characterizations

given for these states in Lemma 9 and Theorem 3, we see that R must be
su�ciently complete with respect to R
 . ut

Finally, we conclude with a proof of the
attening theorem:

Lemma 10. Let A = (K;F ;Q; 	; E;�) be an AC-PTA. For a term t, there
exists a unique set of states P � Q such that
at(t)!Adet

P .

Proof. Prove by structural induction on t. ut

Lemma 11. Let A = (K;F ;Q; 	; E;�) be an AC-PTA. For each t 2 T(K;F);k,
and q 2 Q,

t!A q () (9Q � Qk)
at(t)!Adet
Q ^ q 2Q:

Proof. Prove by structural induction on t. ut

23

Theorem 6 (Flattening Theorem). Let A be a AC-PTA. For each t 2 T�,

t 2 L(A) ()
at(t) 2 L(Adet):

Proof. By the de�nition of Adet and Lemma 11. ut

24

Sufficient Completeness Checking with Propositional Tree Automata

 AIST Programming Science Group Technical Report
August 23, 2005
Research Center for Verification and Semantics
Amagasaki site － AIST Kansai
National Institute of Advanced Industrial Science and Technology (AIST)
Nakoji 3－11－46, Amagasaki, Hyogo 661-0974, Japan
E-mail : informatics-inquiry@m.aist.go.jp
Reproduction in whole or in part without written permission is prohibited.

Sufficient Completeness Checking with Propositional Tree Automata

産業技術総合研究所算譜科学グループ研究速報
発行日：2005年 8月 23日
編集・発行：独立行政法人産業技術総合研究所関西センター尼崎事業所

 システム検証研究センター
連絡先：〒661－0974 兵庫県尼崎市若王寺 3－11－46
E-mail：informatics-inquiry@m.aist.go.jp

本掲載記事の無断転載を禁じます．

