
 

Algebraic Structure for a Fixed Point 

Logic and Abstract Interpretation 
 

Koki Nishizawa and Makoto Takeyama 
CVS, AIST  and  University of Tokyo         CVS, AIST 



Algebraic Structure for

a Fixed Point Logic and Abstract Interpretation

Koki Nishizawa12 and Makoto Takeyama1 ?

1 Research Center of Verification and Semantics,
National Institute of Advanced Industrial Science and Technology, Japan

{koki-nishizawa, makoto.takeyama}@aist.go.jp
2 Dept. of Computer Science, Graduate School of Information Science and

Technology, University of Tokyo, Japan

Abstract. We present an algebraic structure for models of a fixed point
logic. We apply this to a mathematical modelling of the notion of abstract
interpretation.
The formal system of the logic has conjunction, disjunction, and re-
stricted forms of least and greatest fixed point operators. We formulate
its structure as an algebraic structure on the category LocOrd. An inter-
pretation of a theory in the logic is a locally ordered functor to an algebra
of the algebraic structure from a locally ordered category representing
the signature, satisfying the axioms. The free algebra construction gives
soundness and completeness of such interpretations.
We use the logic to express a fragment of modal µ-calculus as a theory in
it, adding negated atomic propositions and modal operators in the signa-
ture. The fragment itself is expressive enough to contain the translation
of CTL formulas.
Next, in order to mathematically model the notion of abstraction rela-
tions between two interpretations, we extend the algebraic structure to
Cat-enriched one. The algebras and algebra maps remain the same, but
we have as 2-cells lax transformations with left adjoints. The 2-cells rep-
resent abstraction relations. The free algebra construction now gives the
soundness of the method using abstraction relations.
We also reformulate in our setting a typical construction of an abstract
interpretation from a concrete one and the data for abstraction relations.
We show the use of this and the above soundness in a verification of a
safety problem.

1 Introduction

This paper aims to elucidate the soundness argument for abstract interpreta-
tion for a fixed point logic. Abstraction plays an important role in reducing the
complexity of model checking for programs or reactive systems [13, 17, 4, 5, 3].
Central to our analysis is the notion of algebraic structure [16, 1, 8, 14] in en-
riched category theory [7]. We present the algebraic structure for the logic. The
? Authors acknowledge the support of a CREST project of Japan Science and Tech-

nology Corporation.



2 Koki Nishizawa and Makoto Takeyama

soundness of the method using abstraction relation directly follows from the free
algebra construction.

We start with the variable-free presentation of our logic Rµ that has a re-
stricted form of least and greatest fixed point operations. A useful fragment of
modal µ-calculus [11] can be expressed as a theory in the logic. The fragment
itself is expressive enough to contain the translation of CTL formulas.

The point of our presentation of Rµ is that it is an algebraic structure, i.e., a
set of basic operations and equations among derived operations, in a categorical,
generalised sense. More precisely, it is a Lawvere A-theory, RMu, in the sense
of [14] where A = LocOrd, the category of locally ordered categories. The
notion of Lawvere A-theory is introduced in [14] as an invariant presentation of
algebraic structures corresponding to a monad on a categoryA (under reasonable
conditions). A model of a Lawvere A-theory is what corresponds to an algebra of
a monad. The syntactic locally ordered category given by Rµ is the free model
FΣ of RMu on a given signature Σ. To give an interpretation of Σ in another
model of RMu is equivalent to giving a map of models from FΣ to that model,
which gives a denotational semantics. When the map satisfies a theory ∆ (a set
of axioms), the interpretation is called a ∆-interpretation. The soundness and
completeness of the class of ∆-interpretations are immediate consequences of the
universality of FΣ.

In order to mathematically model the notion of abstraction relations between
two ∆-interpretations, we extend our analysis in a Cat-enriched context. The
models and maps of models remain the same, but we have as 2-cells lax trans-
formations with left adjoints. The 2-cells represent abstraction relations. The
free model construction now gives the soundness of the argument that truth of
propositions in an abstract interpretation can be transfered to that in the related
concrete interpretation.

We also reformulate in our setting a typical construction of an abstract in-
terpretation from a concrete one and the data for abstraction relations.

As an example, we apply our analysis to a verification of a simple safety
property.

The basic idea of this paper is similar to the paper [10]. However, there are
some differences between them. First, the paper [10] gives an algebraic structure
not for a logic but for a programming language. Second, an interpretation in the
paper [10] is a locally ordered functor from a locally ordered category represent-
ing not the signature but the contexts. Third, arities of the algebraic structure
in the paper [10] are not finitely presentable.

The paper is organised as follows. In Section 2, we define the syntax and the
formal system of the logic Rµ. In Section 3, we define the Lawvere A-theory
RMu for Rµ and show an example of models of RMu. In Section 4, we define
∆-interpretations for a theory ∆. We prove soundness and completeness of the
formal system for them, using the free model construction. In Section 5, we define
the notion of abstraction between ∆-interpretations. In Section 6, we compare
Rµ with CTL and modal µ-calculus. In Section 7, we explain an example of
model checking based on the abstraction.



Algebraic Structure for a Fixed Point Logic and Abstract Interpretation 3

2 Syntax and Formal System Rµ

In this section, we define the formal system Rµ by the rules listed below. The
language of Rµ is parametrised by a signature (Prop, Label) where Prop is the
set of basic propositions and Label that of labels (names for modal operators).
Henceforth we fix an arbitrary signature.

There are three forms of judgements: x : sort (x is a valid Rµ-sort), φ : x →
y (φ is a valid Rµ-formula from sort x to y), and φ ` ψ : x → y (φ entails ψ
where they are from sort x to y). The form φ = ψ : x → y abbreviates the
conjunction of ψ ` φ : x → y and φ ` ψ : x → y.

A theory∆ in Rµ is a set of entailment judgements that are treated as axioms.
The judgements derivable from ∆ are ∆-theorems.

Signature

∗ : sort Ω : sort

p ∈ Prop

p : ∗ → Ω
a ∈ Label

[a] : Ω → Ω

Partial order

φ : x→ y

φ ` φ : x → y

φ ` ψ : x→ y ψ ` σ : x → y

φ ` σ : x → y

Composition

φ : y → z ψ : x→ y

φ ◦ ψ : x→ z

φ : y → z ψ : x→ y σ : w → x

(φ ◦ ψ) ◦ σ = φ ◦ (ψ ◦ σ) : w → z

φ ` σ : y → z ψ ` τ : x→ y

φ ◦ ψ ` σ ◦ τ : x→ z

Identity
x : sort

Id : x→ x

φ : x → y

Id ◦ φ = φ : x → y

φ : x→ y

φ ◦ Id = φ : x→ y

Terminal

1: sort
T1

x : sort
!x : x→ 1

T2 !1 = Id : 1 → 1
T3

φ : x → y

!y ◦ φ =!x : x → 1
T4

Binary product

x : sort y : sort

x× y : sort
B1

x : sort y : sort

λx,y : x× y → x
B2

x : sort y : sort
ρx,y : x× y → y

B3

φ : x→ y ψ : x→ z

〈φ, ψ〉 : x → y × z
B4

x : sort y : sort

〈λx,y, ρx,y〉 = Id : x× y → x× y
B5

φ : x→ y ψ : x→ z

λy,z ◦ 〈φ, ψ〉 = φ : x→ y
B6

φ : x→ y ψ : x→ z

ρy,z ◦ 〈φ, ψ〉 = ψ : x → z
B7



4 Koki Nishizawa and Makoto Takeyama

σ : x → w φ ◦ σ = φ′ : x → y ψ ◦ σ = ψ′ : x → z

〈φ, ψ〉 ◦ σ = 〈φ′, ψ′〉 : x → y × z
B8

φ ` σ : x→ y ψ ` τ : x → z

〈φ, ψ〉 ` 〈σ, τ〉 : x→ y × z
B9

Lattice

x : sort
⊥ : 1 → x

L1
x : sort

∨ : x× x→ x
L2

x : sort
> : 1 → x

L3
x : sort

∧ : x× x → x
L4

x : sort
⊥◦!x ` Id : x→ x

L5
x : sort

Id ` >◦!x : x→ x
L6

x : sort
∨ ◦ 〈Id, Id〉 ` Id : x→ x

L7
x : sort

Id ` 〈Id, Id〉 ◦ ∨ : x× x→ x× x
L8

x : sort
Id ` ∧ ◦ 〈Id, Id〉 : x → x

L9
x : sort

〈Id, Id〉 ◦ ∧ ` Id : x× x → x× x
L10

Least fixed point of restricted formula: µ(φ, ψ) is the least fixed point of F where
Fσ , ∨ ◦ 〈φ, ψ ◦ σ〉.

φ : x→ y ψ : y → y

µ(φ, ψ) : x → y
M1

φ : x → y ψ : y → y

φ ` µ(φ, ψ) : x → y
M2

φ : x → y ψ : y → y

ψ ◦ µ(φ, ψ) ` µ(φ, ψ) : x→ y
M3

φ ` σ : x → y ψ ◦ σ ` σ : x→ y

µ(φ, ψ) ` σ : x→ y
M4

σ : x→ y φ : y → z ψ : z → z

µ(φ, ψ) ◦ σ = µ(φ ◦ σ, ψ) : x→ z
M5

Greatest fixed point of restricted formula: ν(φ, ψ) is the greatest fixed point of
F where Fσ , ∧ ◦ 〈φ, ψ ◦ σ〉.

φ : x→ y ψ : y → y

ν(φ, ψ) : x → y
N1

φ : x → y ψ : y → y

ν(φ, ψ) ` φ : x → y
N2

φ : x → y ψ : y → y

ν(φ, ψ) ` ψ ◦ ν(φ, ψ) : x → y
N3

σ ` φ : x→ y σ ` ψ ◦ σ : x→ y

σ ` ν(φ, ψ) : x → y
N4

σ : x→ y φ : y → z ψ : z → z

ν(φ, ψ) ◦ σ = ν(φ ◦ σ, ψ) : x→ z
N5

∆-Axioms

φ ` ψ : x → y
(provided it is in ∆)



Algebraic Structure for a Fixed Point Logic and Abstract Interpretation 5

3 The Algebraic Structure for Semantics of Rµ

In this section, we give the algebraic structure RMu for the logic Rµ. The
algebraic semantics of Rµ in the next section is based on this structure.

We present RMu as Lawvere A-theory [14]. The notion of Lawvere A-theory
generalises that of classical Lawvere theory [1] in two points. First, we can enrich
our theories in a category V that is locally finitely presentable as a symmetric
monoidal closed category. Second, we can give arities of our theories by finitely
presentable objects of a locally finitely presentable V -category A. The classical
Lawvere theories are the instances where V = A = Set.

We write Af for a skeleton of the full sub-V -category of A given by the
finitely presentable objects of A, and we let ι : Af → A denote the inclusion V -
functor. Following the canonical reference for enriched categories [7], we denote
the composite V -functor

A
Y
−→ [Aop, V ]

[ιop,V ]
−−−−→ [Aop

f , V ]

by ι̃, where Y is an enriched version of the Yoneda embedding.

Definition 1 (Lawvere A-theory). A LawvereA-theory is a small V -category
L together with an identity-on-objects strict finite V -limit preserving V -functor
J : Aop

f → L.

The objects of L are exactly the objects of Aop
f ; they are to be understood as

generalised arities. The arrows of L are operations. (In the classical case, an
arity is a finite set n = 0, 1, · · · , n− 1, and f : m → n is an operation taking m
arguments and returning n results.)

The formal system Rµ has sorts, formulas between sorts, and inequalities
between formulas. To give semantics for them naturally, we consider locally
ordered categories with certain structure.

Definition 2. LocOrd is the category (i.e., Set-category) of locally ordered
small categories and locally ordered functors.

We can prove that this is a locally finitely presentable category.
For later use, we name some finitely presentable objects in LocOrd.

– 0 : the empty locally ordered category (no objects, no arrows).
– 1 : one object and the identity arrow.

– 2 = {a
s- b} : two objects a, b and one non-identity arrow s.

– A3 : two objects and two parallel arrows subject to an inequality between
the arrows.

– 3 : three objects and three non-identity arrows arranged as in the triangle
below, which commutes.

· - ·
QQQQQs

·
?



6 Koki Nishizawa and Makoto Takeyama

– A7 : two objects x, y and non-identity arrows generated from p : x → y
and f : y → y.

We define Lawvere LocOrd-theory RMu corresponding to the formal sys-
tem Rµ. We give RMu as the locally ordered category freely generated from
(LocOrd)opf by adding certain operations, subject to the condition that certain
diagrams commute and that the inclusion is strictly finite-limit preserving. For
each rule of Rµ, we introduce one operation and a few diagrams. Since this pro-
cedure follows the same pattern for all rules, we show only some examples. The
complete definition of RMu is in Appendix A.

For example, we consider the four rules T1 – T4 for terminal objects. These
are specified by four operations corresponding to them and seven diagrams in
Appendix A. The shapes of the premise and the consequence parts of a rule de-
termine the domain and codomain arities (which are locally ordered categories)
of the corresponding rule. Here we consider that an object and an arrow corre-
spond to a sort and a formula, respectively. Thus, the four operations have the
following arities.

T1 : 0 → 1
T2 : 1 → 2
T3 : 0 → 2
T4 : 2 → 3

Next, we consider the rule M4 for the least fixed points.

φ ` σ : x → y ψ ◦ σ ` σ : x→ y

µ(φ, ψ) ` σ : x→ y
M4

In making this rule an operation, it is crucial that we can specify a locally
ordered category as an arity. Here we consider that (−) ` (−) corresponds to
an inequality among arrows. So the shape of the premise is the locally ordered
category A9 with objects x, y and arrows generated from p,q : x → y and
f : y → y subject to inequalities p ≤ q and f ◦ q ≤ q.

y

x

p
6
≤ q

6

y
f - y

�����

q

3

x

q ≤
6

The arity of the corresponding operation is M4 : A9 → A3.
We similarly introduce thirty-three operations for all rules, except for the

rules about identity, composition, partial order (since they are built-in in the
setting), signature, and ∆-axioms (to be treated later).

Next, we introduce diagrams for the rules of Rµ. Two kinds of diagrams are
necessary for each rule. The first kind specifies that part of the codomain arity
which should directly come from the domain arity: For example, in the rule T2

the sort x in the the premise part appears in the consequence. To express that
the two occurrences are equal, we introduce the diagram below. Here, paq is the



Algebraic Structure for a Fixed Point Logic and Abstract Interpretation 7

functor from 1 to 2 = {a
s- b} naming a. In (LocOrd)opf , the direction of

the arrow becomes paq : 2 → 1.

1
T2 - 2

QQQQQid s
1

paq
?

The second kind of diagrams give constraints that certain part of the codomain
arity must be given by some other operation. For example, b in the codomain
arity 2 of T2 must be given by T1. Therefore, we introduce the following diagram
where puniqueq and pbq are the obvious functors.

1
T2 - 2

0

puniqueq
?

T1

- 1

pbq
?

Other diagrams in the definition of RMu in Appendix A are similarly ob-
tained.

Definition 3 (Model of Lawvere A-theory). For a Lawvere A-theory L with
J : Aop

f → L, a model is an object of Mod(L) given by the following pullback in
the category V -Cat of locally small V -categories.

Mod(L) - [L, V ]

A

U
?

ι̃
- [Aop

f , V ]

[J, V ]
?

So, a model of Lawvere A-theory (L, J) is a pair of an object a ∈ A and a V -
functor S : L→ V such that A(ι−, a) = S◦J : Aop

f → V . To see what this means,
consider a model (C, S) of RMu where C ∈ LocOrd and S : RMu → Set. S
sends the operation M1 : A7 → 2, which corresponds to the rule M1, to a
function SM1 : LocOrd(A7, C) → LocOrd(2, C). For G ∈ LocOrd(A7, C),
the diagrams relevant to M1 requires that (SM1)G must have the following:

– Gx = ((SM1)G)a and Gy = ((SM1)G)b
– Gp ≤ ((SM1)G)s and Gf ◦ ((SM1)G)s ≤ ((SM1)G)s
– If k : Gx → Gy satisfies Gp ≤ k and Gf ◦ k ≤ k, then ((SM1)G)s ≤ k.

Example 1. The following data PosCL = (C, S) gives a model of Lawvere LocOrd-
theory RMu.

– Objects of C are complete lattices3.
3 In order to fit C in LocOrd, we should limit the size of lattices, or consider LocOrd

in a higher universe of sets. Either way is not a problem, but here we generally wave
our hands on the size issue.



8 Koki Nishizawa and Makoto Takeyama

– Arrows of C are all monotone functions.
– Orders are given by element-wise orders.
– The structure for 1 is given by the single-element complete lattice.
– The structure for × is given by the binary product of two complete lattices.
– Structures for ⊥, >, ∨, and ∧ are given by least element, greatest element,

join, and meet of complete lattices, respectively.
– SM1 sends G to (SM1)G such that ((SM1)G)s = ∩{r | Gp ∪ (Gf ◦ r) ≤ r}.
– SN1 sends G to (SN1)G such that ((SN1)G)s = ∪{r | r ≤ Gp ∩ (Gf ◦ r)}.

4 Algebraic Semantics of Rµ

In this section, we give the notion of ∆-interpretations using the free model of
Lawvere LocOrd-theory RMu. It is easy to prove soundness and completeness
of the formal system Rµ with respect to the class of ∆-interpretations.

We regard signature (Prop,Label) as the locally ordered category Σ =
Σ(Prop,Label) generated from objects ∗, Ω, an arrow p : ∗ → Ω for each
p ∈ Prop, and an arrow [a] : Ω → Ω for each a ∈ Label. The syntactic entities
of Rµ can be organised into the locally ordered category C defined by

– objects: Rµ-sorts
– arrows: Rµ-formulas quotiented by
– inequality: ∅-theorem (i.e., ∆-theorem for ∆ = ∅)

Then, we can easily define S : RMu → Set such that (C, S) is a model in
Mod(RMu). We write FΣ for (C, S) and η : Σ → UFΣ for the trivial inclusion.

Theorem 1 (Free model). For each model M of Lawvere LocOrd-theory
RMu, any m ∈ LocOrd(Σ,UM) is equal to Um̄◦η for a unique m̄ ∈ Mod(RMu)(FΣ,M).

Proof. The rules for sort- and formula- judgements of Rµ are syntax-directed,
i.e., judgements of the form x : sort or φ : x → y have at most one derivation.
Definition of Um̄ is given by induction on the structure of this derivation.

We write [[−]]m for Um̄ to emphasise that it is a semantics function sending
Rµ-sorts and formulas to semantic values in the model M .

Example 2 (Kripke semantics). A Kripke structure (S, R ⊆ S×Label×S, Q : S →
℘(Prop)) gives rise to the interpretation m ∈ LocOrd(Σ,UPosCL) given by

m∗ = {·} (single-element complete lattice)
mΩ = ℘(S)
mp : · 7→ {s ∈ S | p ∈ Q(s)} for any p ∈ Prop
m[a] : X 7→ {s ∈ S | ∀s′ ∈ S.(s, a, s′) ∈ R ⇒ s′ ∈ X} for any a ∈ Label

Definition 4 (∆-interpretation). For M ∈ Mod(RMu) and a theory ∆, an
arrow m ∈ LocOrd(Σ,UM) is a ∆-interpretation if [[φ]]m ≤ [[ψ]]m for each
axiom φ ` ψ : x → y in ∆.



Algebraic Structure for a Fixed Point Logic and Abstract Interpretation 9

Theorem 2 (Soundness). A ∆-interpretation m ∈ LocOrd(Σ,UM) satisfies
[[φ]]m ≤ [[ψ]]m for any ∆-theorem φ ` ψ : x→ y.

Proof. The soundness of the rules for partial order, composition, and identity is
obvious. That of other rules can be verified through analysis similar to the one
preceding Example 1.

We prove completeness by the construction of a generic model [15], which is
a quotient of FΣ by ∆.

Theorem 3 (Completeness). For Rµ-formulas φ : x → y and ψ : x→ y, the
judgement φ ` ψ : x → y is a ∆-theorem if any ∆-interpretation m satisfies
[[φ]]m ≤ [[ψ]]m.

Proof. Similarly to FΣ, we give a locally ordered category FΣ/∆:

– objects: Rµ-sorts
– arrows: Rµ-formulas quotiented by
– inequality: ∆-theorems

This time, the trivial embedding η∆ : Σ → FΣ/∆ becomes a ∆-interpretation.
More over, we have that φ ` ψ : x → y is a ∆-theorem whenever [[φ]]η∆

≤
[[ψ]]η∆

(cf. Section 5.7 of [15]).

The existence of the free or generic models is automatic for any Lawvere A-
theory, but we gave the explicit description for the proof of completeness in this
sense.

5 Abstraction between Interpretations

In this section, we give the notion of abstraction from a ∆-interpretation to
another with the same codomain.

We use enriched category theory [7] to uniformly extend the analysis of the
previous sections, enriching the set of interpretations LocOrd(Σ,UM) to a
category having abstractions as arrows. Following [9], we model abstractions as
certain lax transformations.

Definition 5. LocOrdlr is the 2-category (i.e., Cat-category) given by

– objects: locally ordered small categories
– arrows: locally ordered functors
– 2-cells: lax transformations whose components have left adjoints (i.e., lax

transformation γ : m → n such that each component γx : mx → nx has a
left adjoint; namely, there exists an αx : nx→ mx such that αx ◦ γx ≤ idmx

and idnx ≤ γx ◦ αx.)

Similarly to the paper [9], we can prove that it is a locally finitely presentable
2-category.

Next, we extend the Set-enriched Lawvere LocOrd-theory RMu to the
Cat-enriched Lawvere LocOrdlr-theory ERMu.



10 Koki Nishizawa and Makoto Takeyama

Definition 6. Lawvere LocOrdlr-theory ERMu is the 2-category freely gener-
ated from (LocOrdlr)

op
f by adding the same operations and diagrams for RMu

in Appendix A.

Theorem 4. There exists a bijection between the class of all models for ERMu
and the class of all models for RMu.

Proof. Let ob : Cat → Set be the functor that sends a category to the set
of the objects. If (C, S : ERMu → Cat) is a model of ERMu, then (C,ob ◦
S : RMu → Set) is a model of RMu.

Conversely, given a model (C, S : RMu → Set) of RMu, there exists a
unique model (C, T : ERMu → Cat) of ERMu such that ob ◦T = S. Here we
show that, for the operation M1, TM1 : LocOrdlr(A7, C) → LocOrdlr(2, C)
is uniquely determined.

Let γ : G→ G′ ∈ LocOrdlr(A7, C). Writing out its lax naturality, we have

Gx
Gp- Gy

≤

G′x

γx
?

G′p
- G′y

γy
?

Gy
Gf - Gy

≤

G′y

γy
?

G′f
- G′y

γy
?

We need to define (TM1)γ that is lax natural, i.e.,

((TM1)G)a
((TM1)G)s- ((TM1)G)b

≤

((TM1)G
′)a

((TM1)γ)a
?

((TM1)G
′)s
- ((TM1)G

′)b

((TM1)γ)b
?

The object part of TM1 must be that of SM1, so ((TM1)G)s = ((SM1)G)s and
((TM1)G

′)s = ((SM1)G
′)s. In the Cat enrichment, the diagram for M1 such as

pa,bq ◦M1 = px,yq represent not only equations for the object part, but also
ones for the arrow part. So we must define not only that ((TM1)G)a = Gx and
((TM1)G

′)a = G′x but also that ((TM1)γ)a = γx; similarly, ((TM1)γ)b = γy.
It remains to verify that (TM1)γ thus defined is lax natural, that is:

Gx
((SM1)G)s- Gy

≤

G′x

γx
?

((SM1)G
′)s
- G′y

γy
?

This is equivalent to ((SM1)G
′)s ≤ γy ◦ ((SM1)G)s ◦ αx where αx is the left

adjoint to γx. So we are done by the operation for M4 if G′p ≤ (RHS) and
G′f ◦ (RHS) ≤ (RHS). Indeed, we have that

G′p ≤ G′p ◦ γx ◦ αx (by adjointness)
≤ γy ◦Gp ◦ αx (by lax naturality with respect to p)
≤ γy ◦ ((SM1)G)s ◦ αx (by the operation for M2)



Algebraic Structure for a Fixed Point Logic and Abstract Interpretation 11

and that

G′f ◦ γy ◦ ((SM1)G)s ◦ αx

≤ γy ◦Gf ◦ ((SM1)G)s ◦ αx (by lax naturality with respect to f)
≤ γy ◦ ((SM1)G)s ◦ αx (by the operation for M3)

Theorem 5 (Free model). There exists an isomorphism between the category
LocOrdlr(Σ,UM) and the category Mod(ERMu)(FΣ,M).

Proof. The bijection on the object classes are given by Theorem 1 together with
Theorem 4. The arrow part is proved similarly to the latter.

Let γ̄ : m̄ → n̄ be the arrow in Mod(ERMu)(FΣ,M) that corresponds to
an arrow γ : m → n in LocOrdlr(Σ,UM) by the above theorem. This cor-
respondence implies a property expected for the notion of abstraction defined
below.

Definition 7 (Abstraction). An abstraction γ from a ∆-interpretation m to
another n is a 2-cell γ : m→ n.

Corollary 1 (Soundness for abstraction). For any abstraction γ : m → n
and any Rµ-formula φ : x→ y, [[φ]]n ◦ γ̄x ≤ γ̄y ◦ [[φ]]m.

Example 3 (Simulation). An abstraction for Kripke models (Example 2) is known
as simulation [13, 17]. Combined with the translation in Section 6, the above
corollary implies a part of the theorem that a simulation preserves certain for-
mulas in modal µ-calculus [12, 17].

The next theorem gives a construction of an abstract ∅-interpretation (i.e.,
∆ = ∅) from a concrete interpretation. This is a generalisation of the typical
construction when model checking a program using data abstraction [4, 5, 3].

Theorem 6 (Construction of abstract interpretation). Let M be a model
of Lawvere LocOrd-theory RMu and m ∈ LocOrdlr(Σ,UM). For any objects
n∗, nΩ ∈ UM and right adjoint arrows γ∗ ∈ UM(m∗, n∗), γΩ ∈ UM(mΩ, nΩ),
the data (n∗, nΩ) extends to an interpretation n ∈ LocOrdlr(Σ,UM) that
makes (γ∗, γΩ) an abstraction γ : m→ n.

Proof. With left adjoints α∗ a γ∗ and αΩ a γΩ, the arrow part of n is given by

np = γ∗ ◦mp ◦ α∗ (for any p ∈ Prop)
n[a] = γΩ ◦m[a] ◦ αΩ (for any a ∈ Label)

The two adjointness make γ lax natural.

6 Comparison with Modal µ-Calculus

In this section, we compare our logic Rµ with modal µ-calculus Lµ [11] and
CTL [2]. First, we introduce syntactic restriction Lµ− of Lµ. Next, we prove
that Lµ− can be translated in Rµ and that CTL can be translated in Lµ−.



12 Koki Nishizawa and Makoto Takeyama

Definition 8. Lµ−-formulas are given by the grammar

ϕ ::= ⊥ | > | ϕ ∨ ϕ | ϕ ∧ ϕ | µZ.(ϕ ∨ ϕ) | νZ.(ϕ ∧ ϕ)
| p | ¬p | ♦ϕ | �ϕ | Z

where

– p is a propositional constant taken from a given set PropLµ− of such con-
stants.

– Z is a propositional variable.
– µZ.(ϕ1 ∨ ϕ2) and νZ.(ϕ1 ∧ ϕ2) must satisfy that Z 6∈ FV (ϕ1) and that
FV (ϕ2) ⊆ {Z}. (We write FV (ϕ) for the set of free variables in ϕ.)

For Lµ−-formulas ϕ and ψ, the result ψ[ϕ/Z] of capture-avoiding substitution of
ϕ for Z in ψ is a Lµ−-formula. The Kripke semantics of Lµ− is the same as that
for Lµ; we write K, s |=Lµ− ϕ when a state s satisfies ϕ in a Kripke structure K.
Also, the inference rules of Lµ− are the instances of those of Lµ in which only
Lµ−-formulas appear; we write ϕ 6Lµ− ψ for inequalities derivable in Lµ−.

Our translation of Lµ−-formulas assumes the following signature for Rµ.

Prop = PropLµ− ∪ {¬p | p ∈ PropLµ−}
Label = {�,♦}

The meaning of the constants is specified by the theory ∆Lµ− , which consists of
the axioms for positive modal algebras [6] and negated basic propositions.

∧ ◦ (Id × ∨) = ∨ ◦ 〈∧ ◦ (Id × λ),∧ ◦ (Id × ρ)〉 : Ω× (Ω ×Ω) → Ω

∧ ◦ ([♦] × [�]) ` [♦] ◦ ∧ : Ω×Ω → Ω

[�] ◦ ∨ ` ∨ ◦ ([♦] × [�]) : Ω×Ω → Ω

[♦] ◦ ⊥ = ⊥ : 1 → Ω

[♦] ◦ ∨ = ∨ ◦ ([♦] × [♦]) : Ω ×Ω → Ω

[�] ◦ > = > : 1 → Ω

[�] ◦ ∧ = ∧ ◦ ([�] × [�]) : Ω ×Ω → Ω

∧ ◦ 〈p,¬p〉 ◦ > = ⊥ : 1 → Ω (p ∈ PropLµ−)

∨ ◦ 〈p,¬p〉 ◦ > = > : 1 → Ω (p ∈ PropLµ−)

Definition 9 (Lµ−-formula to Rµ-formula). Let Γ be a set of propositional
variables, ΩΓ the product sort of Γ copies of Ω, and πZ,Γ the projection corre-
sponding to Z ∈ Γ (i.e., πZ,Γ consists of λ’s and ρ’s). For any Lµ−-formula ϕ
such that FV (ϕ) ⊆ Γ , Rµ-formula |ϕ|Γ : ΩΓ → Ω is given by the following

|⊥|Γ = ⊥◦!ΩΓ

|>|Γ = >◦!ΩΓ

|ϕ ∨ ψ|Γ = ∨ ◦ 〈|ϕ|Γ , |ψ|Γ 〉

|ϕ ∧ ψ|Γ = ∧ ◦ 〈|ϕ|Γ , |ψ|Γ 〉

|µZ.(ϕ ∨ ψ)|Γ = µ(|ϕ|Γ , |ψ|{Z})

|νZ.(ϕ ∧ ψ)|Γ = ν(|ϕ|Γ , |ψ|{Z})

|p|Γ = p ◦ >◦!ΩΓ

|¬p|Γ = ¬p ◦ >◦!ΩΓ

|♦ϕ|Γ = [♦] ◦ |ϕ|Γ

|�ϕ|Γ = [�] ◦ |ϕ|Γ

|Z|Γ = πZ,Γ



Algebraic Structure for a Fixed Point Logic and Abstract Interpretation 13

Lemma 1. If FV (ϕ) ⊆ Γ , Z 6∈ FV (ϕ), and FV (ψ) ⊆ {Z}, then |ψ[ϕ/Z]|Γ =
|ψ|{Z} ◦ |ϕ|Γ .

Proof. By induction on the structure of ψ.

The translation is faithful with respect to the Kripke semantics in the follow-
ing sense. Given a Kripke structure K = (S, R ⊆ S×S, Q : S → ℘(PropLµ−)),
define the interpretation mK ∈ LocOrd(Σ,UPosCL) by

mK∗ = {·} (single-element complete lattice)
mKΩ = ℘(S)
mK p : · 7→ {s ∈ S | p ∈ Q(s)} (p ∈ PropLµ−)
mK¬p : · 7→ {s ∈ S | p 6∈ Q(s)} (p ∈ PropLµ−)
mK [♦] : X 7→ {s ∈ S | ∃s′ ∈ X.(s, s′) ∈ R}
mK [�] : X 7→ {s ∈ S | ∀s′ ∈ S.(s, s′) ∈ R ⇒ s′ ∈ X}

Theorem 7. The interpretation mK is a ∆Lµ− -interpretation. Moreover, for
any closed Lµ−-formula ϕ and ψ,

∀s.(K, s |=Lµ− ϕ ⇒ K, s |=Lµ− ψ) ⇐⇒ [[|ϕ|∅]]mK
≤ [[|ψ|∅]]mK

Proof. Lemma 1 and induction on ϕ show that [[|ϕ|∅]]mK
= {s | K, s |=Lµ− ϕ}.

Theorem 8. For any Lµ−-formulas ϕ and ψ with FV (ϕ, ψ) ⊆ Γ ,

ϕ 6Lµ− ψ ⇐⇒ |ϕ|Γ ` |ψ|Γ : ΩΓ → Ω is a ∆Lµ−−theorem

Proof. By induction on the derivations in Lµ− and in Rµ.

Next, we compare CTL-formula with Lµ−-formula. Semantics of CTL is
given by Kripke structures with total transition relations. The translation || − ||
from CTL-formulas in the negation normal form to closed modal µ-formula is
well-known [2]. It is direct to check that ||ϕ|| is a Lµ−-formula for any negation
normal CTL-formula ϕ.

||p|| = p
||¬p|| = ¬p

||EXϕ|| = ♦||ϕ||
||AXϕ|| = �||ϕ||
||EFϕ|| = µZ.(||ϕ|| ∨ ♦Z)
||AFϕ|| = µZ.(||ϕ|| ∨ �Z)

||E(ϕUψ)|| = µZ.(||ψ|| ∨ (||ϕ|| ∧ ♦Z))
||A(ϕUψ)|| = µZ.(||ψ|| ∨ (||ϕ|| ∧ �Z))

||EGϕ|| = νZ.(||ϕ|| ∧ ♦Z)
||AGϕ|| = νZ.(||ϕ|| ∧ �Z)

||E(ϕVψ)|| = νZ.(||ψ|| ∧ (||ϕ|| ∨ ♦Z))
||A(ϕVψ)|| = νZ.(||ψ|| ∧ (||ϕ|| ∨ �Z))



14 Koki Nishizawa and Makoto Takeyama

7 Example of Abstract Interpretation

In this section, we explain how our analysis applies to a simple safety-property
verification of a program using an abstraction interpretation. The program is

/* 1 */

while(0 =< x){

/* 2 */

x = x+y;

/* 3 */

}

/* 4 */

where x, y are integer variables. We aim to show that the line 4 in the program
is not reachable if x and y are positive in the initial line 1.

To formalise the program as an interpretation, we take the following signature
Σ = (Prop,Label) and the theory ∆.

Prop = {isn′t1, isn′t4, (x < 0), (y < 0)}
Label = {if(pc = 1), if(pc = 2), if(pc = 3), if(0 =< x), if(x < 0),

pc := 2, pc := 3, pc := 4, x := x + y}
∆ = ∅

Here, we give no condition among the above formulas. For example, we can have
an interpretation m′ such that m′[if(0 =< x)] = m′[if(x < 0)].

The concrete interpretation m ∈ LocOrdlr(Σ,UPosCL) we use must of-
course match the intended semantics of the program we want to verify. We regard
the program as a Kripke structure with the state set W = {1, 2, 3, 4}× Z × Z.
The numbers from 1 to 4 correspond to the lines so numbered in the program.
Similarly to Example 2, the interpretation m is given by

m ∗ = {·}
mΩ = ℘(W)
m isn′t1(·) = {(c, a, b) | c ∈ {2, 3, 4}, a, b ∈ Z}
m isn′t4(·) = {(c, a, b) | c ∈ {1, 2, 3}, a, b ∈ Z}
m (x < 0)(·) = {(c, a, b) | c ∈ {1, 2, 3, 4}, a, b ∈ Z, a < 0}
m (y < 0)(·) = {(c, a, b) | c ∈ {1, 2, 3, 4}, a, b ∈ Z, b < 0}
m [if(pc = 1)](X) = X ∪ {(c, a, b) | c ∈ {2, 3, 4}, a, b ∈ Z}
m [if(pc = 2)](X) = X ∪ {(c, a, b) | c ∈ {1, 3, 4}, a, b ∈ Z}
m [if(pc = 3)](X) = X ∪ {(c, a, b) | c ∈ {1, 2, 4}, a, b ∈ Z}
m [if(0 =< x)](X) = X ∪ {(c, a, b) | c ∈ {1, 2, 3, 4}, a, b ∈ Z, a < 0}
m [if(x < 0)](X) = X ∪ {(c, a, b) | c ∈ {1, 2, 3, 4}, a, b ∈ Z, 0 ≤ a}
m [pc := 2](X) = {(c, a, b) | (2, a, b) ∈ X}
m [pc := 3](X) = {(c, a, b) | (3, a, b) ∈ X}
m [pc := 4](X) = {(c, a, b) | (4, a, b) ∈ X}
m [x := x + y](X) = {(c, a, b) | (c, a+ b, b) ∈ X}



Algebraic Structure for a Fixed Point Logic and Abstract Interpretation 15

The safety property we want to show can be formally stated as the Rµ-
formula σ:

σ = ∨ ◦ 〈isn′t1,∨ ◦ 〈(x < 0),∨ ◦ 〈(y < 0), ν(isn′t4, ψ)〉〉〉
ψ = ∧ ◦ 〈ϕ1,4,∧ ◦ 〈ϕ1,2,∧ ◦ 〈ϕ2,3,∧ ◦ 〈ϕ3,4, ϕ3,2〉〉〉〉
ϕ1,4 = [if(pc = 1)] ◦ [if(x < 0)] ◦ [pc := 4]
ϕ1,2 = [if(pc = 1)] ◦ [if(0 =< x)] ◦ [pc := 2]
ϕ2,3 = [if(pc = 2)] ◦ [x := x + y] ◦ [pc := 3]
ϕ3,4 = [if(pc = 3)] ◦ [if(x < 0)] ◦ [pc := 4]
ϕ3,2 = [if(pc = 3)] ◦ [if(0 =< x)] ◦ [pc := 2]

To show that the property holds is to show that [[σ]]m is the greatest element of
UPosCL(m∗,mΩ). However, we can not directly check if w ∈ [[σ]]m(·) for each
w ∈ W as W is infinite.

Therefore, we construct an abstract interpretation for m according to Theo-
rem 6. We use the predicate pos to abstract integers into boolean values.

pos : Z → {t, f}

pos(x) =

{

t (0 ≤ x)

f (x < 0)

Accordingly, we define the set V of abstract states and the abstraction relation
Q ⊆ W ×V by

V = {1, 2, 3, 4}× {t, f} × {t, f}

Q = {((c, a, b), (c,pos(a),pos(b))) | (c, a, b) ∈ W}

The relationQ canonically gives rise to the adjunction αΩ a γΩ : ℘(W) → ℘(V).

αΩ(X) = {w ∈ W | ∃v ∈ X.(w, v) ∈ Q}
γΩ(X) = {v ∈ V | ∀w ∈ W.(w, v) ∈ Q⇒ w ∈ X}

Together with this and γ∗ = id{·}, Theorem 6 gives the abstract interpretation
n ∈ LocOrdlr(Σ,UPosCL) for which γ : m→ n is an abstraction.

np = γΩ ◦mp (for any p ∈ Prop)
n[a] = γΩ ◦m[a] ◦ αΩ (for any a ∈ Label)

Now it is directly checkable that [[σ]]n is the greatest in UPosCL(n∗, nΩ) by
checking every element of finite W. The detail is shown in Appendix B. By
Corollary 1, the formula σ satisfies [[σ]]n ◦ γ∗ ≤ γΩ ◦ [[σ]]m, which is equiva-
lent to αΩ ◦ [[σ]]n ≤ [[σ]]m in our case. The left hand side is the greatest in
UPosCL(m∗,mΩ) by the definition of αΩ, hence so is [[σ]]m as desired.

References

1. Michael Barr and Charles Wells. Toposes, Triples and Theories, volume 278 of
Grundlagen der Mathematischen Wissenschaften. Springer-Verlag, Berlin, 1985.



16 Koki Nishizawa and Makoto Takeyama

2. Edmund M. Clarke and E. Allen Emerson. Design and synthesis of synchronization
skeletons using branching-time temporal logic. In Logic of Programs, pages 52–71,
1981.

3. Edmund M. Clarke, Orna Grumberg, and David E. Long. Model checking
and abstraction. ACM Transactions on Programming Languages and Systems,
16(5):1512–1542, September 1994.

4. P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Conference

Record of the Fourth Annual ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages, pages 238–252, Los Angeles, California, 1977. ACM
Press, New York, NY.

5. S. Graf and H. Saidi. Construction of abstract state graphs with pvs. In Conference

on Computer Aided Verification CAV’97, LNCS 1254, Springer Verlag, 1997.
6. Chrysafis Hartonas. Duality for modal µ-logics. Theoretical Computer Science,

202(1–2):193–222, 28 July 1998.
7. G. M. Kelly. Basic concepts of enriched category theory, volume 64 of London

Mathematical Society lecture note series. Cambridge University Press, 1982.
8. G. M. Kelly and A. J. Power. Adjunctions whose counits are coequalizers, and

presentations of finitary enriched monads. Journal of Pure and Applied Algebra,
89:163–179, 1993.

9. Y. Kinoshita and J. Power. Lax naturality through enrichment. Journal of Pure

and Applied Algebra, 112:53–72, 1996.
10. Yoshiki Kinoshita and John Power. A general completeness result in refinement.

In WADT’99, LNCS 1827, Springer Verlag, 2000.
11. D. Kozen. Results on the propositional mu-calculus. Theoretical Computer Science,

27:333–354, 1983.
12. C. Loiseaux, S. Graf, J. Sifakis, A. Bouajjani, and S. Bensalem. Property preserving

abstractions for the verification of concurrent systems. Formal Methods in System

Design Volume 6, Issue 1, 1995.
13. Robin Milner. An algebraic definition of simulation between programs. In D. C.

Cooper, editor, Proceedings of the 2nd International Joint Conference on Artificial

Intelligence, pages 481–489, London, UK, September 1971. William Kaufmann.
14. Koki Nishizawa and John Power. Lawvere theories enriched over a general base.

Programming Science Technical Report AIST-PS-2005-005, Research Center of
Verification and Semantics, National Institute of Advanced Industrial Science
and Technology, http://unit.aist.go.jp/cvs/tr-data/ps05-005.pdf, February
2005.

15. A. M. Pitts. Categorical logic. In S. Abramsky, D. M. Gabbay, and T. S. E.
Maibaum, editors, Handbook of Logic in Computer Science, Volume 5. Algebraic

and Logical Structures, chapter 2. Oxford University Press, 2000.
16. E.P. Robinson. Variations on algebra: monadicity and generalisations of equational

theories. Computer Science Technical Report 6/94, University of Sussex, April
1994.

17. Klaus Schneider. Verification of Reactive Systems. Springer-Verlag, 2003.

A Lawvere LocOrd-theory RMu

We define some examples of finitely presentable objects and arrows in LocOrd.
Let 0 be the empty locally ordered category (no objects, no arrows). Let 1 be



Algebraic Structure for a Fixed Point Logic and Abstract Interpretation 17

the locally ordered category with one object and one (identity) arrow. Let 2 be
the locally ordered category with two objects l and r. Let plq : 1 → 2 send the
unique object of 1 to l. Let prq : 1 → 2 send the unique object of 1 to r. Let
2 be the locally ordered category with two objects and just one non-identity
arrow. Let s : a → b be the non-identity arrow in 2. Let paq : 1 → 2 send the
unique object of 1 to a. Let pbq : 1 → 2 send the unique object of 1 to b. Let
pa,bq : 2 → 2 send l to a and send r to b. Let puq be the unique functor from
X to 1 in LocOrdf for any X . Let 3 be the locally ordered category with three
objects whose non-identity arrows are arranged as in the triangle. (This diagram
commutes.)

·
g - ·

QQQQQs
·

h
?

Let pgq : 2 → 3 send s to g. Let phq : 2 → 3 send s to h. Let ph ◦ gq : 2 → 3
send s to h ◦ g.

Let A1 be the locally ordered category with three objects and two non-
identity arrows as follows.

cl
� cλ

cv

cρ - cr

Let pcvq : 1 → A1 send the unique object of 1 to cv. Let pidcvq : 2 → A1 send
s to the identity arrow on cv. Let pcl,rq : 2 → A1 send l to cl and send r to cr.
Let pcλq : 2 → A1 send s to cλ. Let pcρq : 2 → A1 send s to cρ.

We define A2 by the following pushout.

1
pbq - 2

A1

pcvq
?

jA1,A2

- A2

j2,A2

?

Let pc ◦ sq : A1 → A2 send cλ to cλ ◦ s and send cρ to cρ ◦ s.
Let A3 be the locally ordered category with two objects ia and ib and arrows

is, is′ : ia → ib subject to inequality is ≤ is′ . Let pisq : 2 → A3 send s to is. Let
pis′q : 2 → A3 send s to is′ .

Let A4 be the following locally ordered category.

el

ev

eλ
6
≤ eλ′

6
er

ev

eρ
6
≤ eρ′

6

Let peλ,ρq : A1 → A4 send cλ to eλ and send cρ to eρ. Let peλ′,ρ′q : A1 → A4

send cλ to eλ′ and send cρ to eρ′ .



18 Koki Nishizawa and Makoto Takeyama

We define A5 and A6 by the following pushouts, respectively.

2
ph ◦ gq- 3

A3

pisq
?

jA3 ,A5

- A5

j3,A5

?

2
ph ◦ gq- 3

A3

pis′q
?

jA3,A6

- A6

j3,A6

?

Let A7 be the locally ordered category with two objects x, y and non-identity
arrows generated from p : x → y and f : y → y. Let pfq : 2 → A7 send s to f .
Let ppq : 2 → A7 send s to p. Let pxq : 1 → A7 send the unique object of 1 to
x. Let px,yq : 2 → A7 send l to x and send r to y.

We define A8 by the following pushout.

1
pbq - 2

A7

pxq
?

jA7,A8

- A8

j2,A8

?

Let pp ◦ s, fq : A7 → A8 send p to p ◦ s and send f to f .
Let A9 be the locally ordered category with two objects x, y and non-identity

arrows generated from p,q : x → y and f : y → y subject to inequalities p ≤ q
and f ◦ q ≤ q.

y

x

p
6
≤ q

6
y

f - y

�����

q

3

x

q ≤
6

Let j2,A9
: 2 → A9 send s to q. Let jA7,A9

: A7 → A9 send p to p and send f
to f .

Let A10 be the locally ordered category with objects x, y and non-identity
arrows generated from p,q : x → y and f : y → y subject to inequalities q ≤ p
and q ≤ f ◦ q.

y

x

q
6
≤ p

6

y
f - y

�����

q

3

x

q ≥
6

Let j2,A10
: 2 → A10 send s to q. Let jA7 ,A10

: A7 → A10 send p to p and
send f to f .

We define Lawvere LocOrd-theory RMu corresponding to the formal sys-
tem Rµ. Let RMu be freely generated from (LocOrd)opf by adding the following
operations subject to the following diagrams. We can also reformulate by a single
operation for multiple operations that have a common domain. However, since it
is difficult to understand the correspondence between the reformulated Lawvere
LocOrd-theory and the formal system, we do not so.



Algebraic Structure for a Fixed Point Logic and Abstract Interpretation 19

Terminal
T1 : 0 → 1
T2 : 1 → 2
T3 : 0 → 2
T4 : 2 → 3

1
T2 - 2

QQQQQid s
1

paq
?

1
T2 - 2

0

puq
?

T1

- 1

pbq
?

0
T3 - 2

�����

T2

3

1

T1
?

0
T3 - 2

�����

puq

3

1

T1
?

2
T4 - 3

QQQQQid s
2

pgq
?

2
T4 - 3

1

paq
? T2 - 2

ph ◦ gq
?

2
T4 - 3

1

pbq
? T2 - 2

phq
?

Binary product
B1 : 2 → 1
B2 : 2 → 2
B3 : 2 → 2
B4 : A1 → 2
B5 : 2 → A1

B6 : A1 → 3
B7 : A1 → 3
B8 : A2 → 3
B9 : A4 → A3

2
B2 - 2

QQQQQplq s
1

pbq
?

2
B2 - 2

QQQQQB1 s
1

paq
?

2
B3 - 2

QQQQQprq s
1

pbq
?

2
B3 - 2

QQQQQB1 s
1

paq
?

A1

B4 - 2
QQQQQpcvq s

1

paq
?

A1

B4 - 2

2

pcl,rq
?

B1

- 1

pbq
?

2
B5 - A1

A1

B5
?

B4

- 2

pidcvq
?

2
B5 - A1

QQQQQB2 s
2

pcλq
?

2
B5 - A1

QQQQQB3 s
2

pcρq
?



20 Koki Nishizawa and Makoto Takeyama

A1

B6 - 3
QQQQQpcλq s

2

ph ◦ gq
?

A1

B6 - 3
QQQQQB4 s

2

pgq
?

A1

B6 - 3

2

pcl,rq
?

B2

- 2

phq
?

A1

B7 - 3
QQQQQpcρq s

2

ph ◦ gq
?

A1

B7 - 3
QQQQQB4 s

2

pgq
?

A1

B7 - 3

2

pcl,rq
?

B3

- 2

phq
?

A2

B8 - 3
QQQQQj2,A2 s

2

pgq
?

A2

B8 - 3

A1

pc ◦ sq
? B4 - 2

ph ◦ gq
?

A2

B8 - 3

A1

jA1,A2

? B4 - 2

phq
?

A4

B9 - A3

A1

peλ,ρq
? B4 - 2

pisq
?

A4

B9 - A3

A1

peλ′,ρ′q
? B4 - 2

pis′q
?

Lattice
L1 : 1 → 2
L2 : 1 → 2
L3 : 1 → 2
L4 : 1 → 2
L5 : 1 → A5

L6 : 1 → A6

L7 : 1 → A5

L8 : 1 → A6

L9 : 1 → A6

L10 : 1 → A5

1
L1 - 2

QQQQQid s
1

pbq
?

1
L1 - 2

0

puq
? T1 - 1

paq
?

1
L2 - 2

QQQQQid s
1

pbq
?

1
L2 - 2

2

puq
? B1 - 1

paq
?

1
L3 - 2

QQQQQid s
1

pbq
?

1
L3 - 2

0

puq
? T1 - 1

paq
?

1
L4 - 2

QQQQQid s
1

pbq
?

1
L4 - 2

2

puq
? B1 - 1

paq
?



Algebraic Structure for a Fixed Point Logic and Abstract Interpretation 21

1
L5 - A5

2

puq
?
�

pis′q
A3

jA3,A5

?

1
L5 - A5

2

L1
?
�

phq
3

j3,A5

?

1
L5 - A5

2

T2
?
�

pgq
3

j3,A5

?

1
L6 - A6

2

puq
?
�

pisq
A3

jA3,A6

?

1
L6 - A6

2

L3
?
�

phq
3

j3,A6

?

1
L6 - A6

2

T2
?
�

pgq
3

j3,A6

?

1
L7 - A5

2

puq
?
�

pis′q
A3

jA3,A5

?

1
L7 - A5

2

L2
?
�

phq
3

j3,A5

?

1
L7 - A5

j3,A5 - 3

A1

puq
?

B4

- 2

pgq
?

1
L8 - A6

2

L2
?
�

pgq
3

j3,A6

?

1
L8 - A6

jA3,A6- A3

2

puq
?

B1

- 1
puq

- 2

pisq
?

1
L8 - A6

j3,A6 - 3

A1

puq
?

B4

- 2

phq
?

1
L9 - A6

2

puq
?
�

pisq
A3

jA3,A6

?

1
L9 - A6

2

L4
?
�

phq
3

j3,A6

?

1
L9 - A6

j3,A6 - 3

A1

puq
?

B4

- 2

pgq
?

1
L10 - A5

2

L4
?
�

pgq
3

j3,A5

?

1
L10 - A5

jA3,A5- A3

2

puq
?

B1

- 1
puq

- 2

pis′q
?



22 Koki Nishizawa and Makoto Takeyama

1
L10 - A5

j3,A5 - 3

A1

puq
?

B4

- 2

phq
?

Least fixed point of restricted formula

M1 : A7 → 2
M2 : A7 → A3

M3 : A7 → A5

M4 : A9 → A3

M5 : A8 → 3

A7

M1 - 2
QQQQQpx,yq s

2

pa,bq
?

A7

M2 - A3

QQQQQppq s
2

pisq
?

A7

M2 - A3

QQQQQM1 s
2

pis′q
?

A7

M3 - A5

2

M1
?
�

pis′q
A3

jA3,A5

?

A7

M3 - A5

2

pfq
?
�

phq
3

j3,A5

?

A7

M3 - A5

2

M1
?
�

pgq
3

j3,A5

?

A9

M4 - A3

QQQQQj2,A9 s
2

pis′q
?

A9

M4 - A3

A7

jA7,A9

?

M1

- 2

pisq
?

A8

M5 - 3
QQQQQj2,A8 s

2

pgq
?

A8

M5 - 3

A7

jA7,A8

?

M1

- 2

phq
?

A8

M5 - 3

A7

pp ◦ s, fq
?

M1

- 2

ph ◦ gq
?

Greatest fixed point of restricted formula

N1 : A7 → 2
N2 : A7 → A3

N3 : A7 → A6

N4 : A10 → A3

N5 : A8 → 3



Algebraic Structure for a Fixed Point Logic and Abstract Interpretation 23

A7

N1 - 2
QQQQQpx,yq s

2

pa,bq
?

A7

N2 - A3

QQQQQppq s
2

pis′q
?

A7

N2 - A3

QQQQQN1 s
2

pisq
?

A7

N3 - A6

2

N1
?
�

pisq
A3

jA3,A6

?

A7

N3 - A6

2

pfq
?
�

phq
3

j3,A6

?

A7

N3 - A6

2

N1
?
�

pgq
3

j3,A6

?

A10

N4 - A3

QQQQQj2,A10 s
2

pisq
?

A10

N4 - A3

A7

jA7 ,A10

?

N1

- 2

pis′q
?

A8

N5 - 3
QQQQQj2,A8 s

2

pgq
?

A8

N5 - 3

A7

jA7,A8

?

N1

- 2

phq
?

A8

N5 - 3

A7

pp ◦ s, fq
?

N1

- 2

ph ◦ gq
?

B Model Checking for Finite Set of States

In this section, we show that [[σ]]n in Section 7 is a greatest element in UPosCL(n∗, nΩ).
By Theorem 6, we construct n as follows.

n∗ = {·}
nΩ = ℘(V)
nisn′t1(·) = {2, 3, 4}× {t, f} × {t, f}
nisn′t4(·) = {1, 2, 3}× {t, f} × {t, f}
n(x < 0)(·) = {1, 2, 3, 4}× {f} × {t, f}
n(y < 0)(·) = {1, 2, 3, 4}× {t, f} × {f}
n[if(pc = 1)](X) = X ∪ ({2, 3, 4}× {t, f} × {t, f})
n[if(pc = 2)](X) = X ∪ ({1, 3, 4}× {t, f} × {t, f})
n[if(pc = 3)](X) = X ∪ ({1, 2, 4}× {t, f} × {t, f})
n[if(0 =< x)](X) = X ∪ ({1, 2, 3, 4}× {f} × {t, f})
n[if(x < 0)](X) = X ∪ ({1, 2, 3, 4}× {t} × {t, f})
n[pc := 2](X) = {(c, a, b) | c ∈ {1, 2, 3, 4}, a, b ∈ {t, f}, (2, a, b) ∈ X}
n[pc := 3](X) = {(c, a, b) | c ∈ {1, 2, 3, 4}, a, b ∈ {t, f}, (3, a, b) ∈ X}
n[pc := 4](X) = {(c, a, b) | c ∈ {1, 2, 3, 4}, a, b ∈ {t, f}, (4, a, b) ∈ X}



24 Koki Nishizawa and Makoto Takeyama

n[x := x + y](X) = {(c, t, t) | c ∈ {1, 2, 3, 4}, (c, t, t) ∈ X}∪
{(c, t, f) | c ∈ {1, 2, 3, 4}, (c, t, f), (c, f , f) ∈ X}∪
{(c, f , t) | c ∈ {1, 2, 3, 4}, (c, t, t), (c, f , t) ∈ X}∪
{(c, f , f) | c ∈ {1, 2, 3, 4}, (c, f , f) ∈ X}

Combining the above functions, we get [[ϕ1,4]]n, [[ϕ1,2]]n, [[ϕ2,3]]n, [[ϕ3,4]]n,
[[ϕ3,2]]n, and [[ψ]]n as follows.

ϕ1,4 = [if(pc = 1)] ◦ [if(x < 0)] ◦ [pc := 4]
[[ϕ1,4]]n(X) = ({2, 3, 4}× {t, f} × {t, f})∪

{(1, t, t), (1, t, f)}∪
{(1, f , b) | b ∈ {t, f}, (4, f , b) ∈ X}

ϕ1,2 = [if(pc = 1)] ◦ [if(0 =< x)] ◦ [pc := 2]
[[ϕ1,2]]n(X) = ({2, 3, 4}× {t, f} × {t, f})∪

{(1, f , t), (1, f , f)}∪
{(1, t, b) | b ∈ {t, f}, (2, t, b) ∈ X}

ϕ2,3 = [if(pc = 2)] ◦ [x := x + y] ◦ [pc := 3]
[[ϕ2,3]]n(X) = ({1, 3, 4}× {t, f} × {t, f})∪

{(2, a, b) | a, b ∈ {t, f}, (3, a, b), (3, b, b) ∈ X}

ϕ3,4 = [if(pc = 3)] ◦ [if(x < 0)] ◦ [pc := 4]
[[ϕ3,4]]n(X) = ({1, 2, 4}× {t, f} × {t, f})∪

{(3, t, t), (3, t, f)}∪
{(3, f , b) | b ∈ {t, f}, (4, f , b) ∈ X}

ϕ3,2 = [if(pc = 3)] ◦ [if(0 =< x)] ◦ [pc := 2]
[[ϕ3,2]]n(X) = ({1, 2, 4}× {t, f} × {t, f})∪

{(3, f , t), (3, f , f)}∪
{(3, t, b) | b ∈ {t, f}, (2, t, b) ∈ X}

ψ = ∧ ◦ 〈ϕ1,4,∧ ◦ 〈ϕ1,2,∧ ◦ 〈ϕ2,3,∧ ◦ 〈ϕ3,4, ϕ3,2〉〉〉〉
[[ψ]]n(X) = ({4} × {t, f} × {t, f})∪

{(1, f , b) | b ∈ {t, f}, (4, f , b) ∈ X}∪
{(1, t, b) | b ∈ {t, f}, (2, t, b) ∈ X}∪
{(2, a, b) | a, b ∈ {t, f}, (3, a, b), (3, b, b) ∈ X}∪
{(3, f , b) | b ∈ {t, f}, (4, f , b) ∈ X}∪
{(3, t, b) | b ∈ {t, f}, (2, t, b) ∈ X}

Next, we compute [[ν(isn′t4, ψ)]]n. By the structure of PosCL, [[ν(isn′t4, ψ)]]n(·)
is the greatest fixed point of the following function F : ℘(V) → ℘(V).

F (X) = [[isn′t4]]n(·) ∩ [[ψ]]n(X)



Algebraic Structure for a Fixed Point Logic and Abstract Interpretation 25

Since V is a finite set, we can compute the value as follows. Since F 4(V) =
F 5(V), the greatest fixed point [[ν(isn′t4, ψ)]]n(·) is F 5(V) = {(1, t, t), (2, t, t), (3, t, t)}.

F 0(V) = V
F 1(V) = {1, 2, 3}× {t, f} × {t, f}
F 2(V) = {(1, t, t), (1, t, f), (2, t, t), (2, t, f), (2, f , t), (2, f , f), (3, t, t), (3, t, f)}
F 3(V) = {(1, t, t), (1, t, f), (2, t, t), (3, t, t), (3, t, f)}
F 4(V) = {(1, t, t), (2, t, t), (3, t, t)}
F 5(V) = {(1, t, t), (2, t, t), (3, t, t)}

Therefore, we can easily prove that [[σ]]n(·) = V for the following σ.

σ = ∨ ◦ 〈isn′t1,∨ ◦ 〈(x < 0),∨ ◦ 〈(y < 0), ν(isn′t4, ψ)〉〉〉



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

不動点論理と抽象解釈のための代数構造 (in English) 
(算譜科学研究速報) 
発行日：2005年 6月 15日  
編集・発行：独立行政法人産業技術総合研究所関西センター尼崎事業所 
      システム検証研究センター 

同連絡先：〒661-0974 兵庫県尼崎市若王寺 3-11-46 
e-mail：informatics-inquiry@m.aist.go.jp 
本掲載記事の無断転載を禁じます 

 
Algebraic Structure for a Fixed Point Logic and Abstract Interpretation 

       (Programming Science Technical Report)  
June 15, 2005 
Research Center for Verification and Semantics (CVS) 
AIST Kansai, Amagasaki Site 
National Institute of Advanced Industrial Science and Technology (AIST) 
3-11-46 Nakouji, Amagasaki, Hyogo, 661-0974, Japan 
e-mail: informatics- inquiry@m.aist.go.jp 

・Reproduction in whole or in part without written permission is prohibited. 


